Anti-oxidative Effect of Salvia miltiorrhiza Bunge in Caenorhabditis elegans

단삼의 예쁜꼬마선충 내의 항산화 효과

  • Received : 2018.12.06
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

Methanol extract of Salvia miltiorrhiza Bunge (Labiatae) root was investigated to research the anti-oxidative activity, by using a Caenorhabditis elegans model system. The methanol extract of this plant showed significant DPPH radical scavenging and superoxide quenching activities. Ethyl acetate soluble fraction of the methanol extract that showed the most potent DPPH radical scavenging and superoxide quenching activities. The ethyl acetate fraction was tested on its activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance in C. elegans. Furthermore, in order to see if regulation of stress-response genes is responsible for the increased stress tolerance of the ethyl acetate fraction treated C. elegans, we checked SOD-3 expression using a transgenic strain. Consequently, the ethyl acetate fraction of S. miltiorrhiza root increased the catalase and SOD activities in a dose-dependent manner in C. elegans. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity than the non-treated ones.

Keywords

References

  1. Davalli, P., Mitic, T., Caporali, A., Lauriola, A. and D'Arca, D. (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell Longev. doi: 10.1155/2016/3565127.
  2. Luceri, C., Bigagli, E., Femia, A. P., Caderni, G., Giovannelli, L. and Lodovici, M. (2017) Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol. Rep. doi: 10.1016/j.toxrep.2017.12.017
  3. Merksamer, P. I., Liu, Y., He, W., Hirschey, M. D., Chen, D. and Verdin, E. (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5: 144-150.
  4. Cedikova, M., Pitule, P., Kripnerova, M., Markova, M. and Kuncova, J. (2016) Multiple roles of mitochondria in aging processes. Physiol. Res. 65(Supplementum 5): S519-S531.
  5. Vera Saltos, M. B., Naranjo Puente, B. F., Milella, L., De Tommasi, N., Dal Piaz, F. and Braca, A. (2015) Antioxidant and free radical scavenging activity of phenolics from Bidens humilis. Planta Med. 81: 1056-1064. https://doi.org/10.1055/s-0035-1545928
  6. Saidi Merzouk, A., Hafida, M., Medjdoub, A., Loukidi, B., Cherrak, S., Merzouk, S. A. and Elhabiri, M. (2017) Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols. Free Radic. Res. 51: 294-305. https://doi.org/10.1080/10715762.2017.1307979
  7. Niki, E. (2016) Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct. 7: 2156-2168. https://doi.org/10.1039/C6FO00275G
  8. Gomathi, D., Ravikumar, G., Kalaiselvi, M., Vidya, B. and Uma, C. (2015) In vitro free radical scavenging activity of ethanolic extract of the whole plant of Evolvulus alsinoides (L.) L. Chin. J. Integr. Med. 21: 453-458. https://doi.org/10.1007/s11655-014-1763-0
  9. Waqas, M. K., Saqib, N. U., Rashid, S. U., Shah, P. A., Akhtar, N. and Murtaza, G. (2013) Screening of various botanical extracts for antioxidant activity using DPPH free radical method. Afr. J. Tradit. Complement Altern. Med. 10: 452-455. https://doi.org/10.4314/ajtcam.v10i6.9
  10. Sharma, S. K. and Singh, A. P. (2012) In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J. Acupunct. Meridian Stud. 5: 112-118. https://doi.org/10.1016/j.jams.2012.03.002
  11. Lee, K.-I., Kim, S.-H. and Seong, R.-K. (1996) Study on antitumor effect of Salviae Miltorrhizae Radix and isolation of active compound. Korean J. Oriental Medical Pathology 10: 76-91.
  12. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  13. Thuong, P. T., Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  14. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  15. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  16. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  17. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  18. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  19. Wu, C. F., Hong, C., Klauck, S. M., Lin, Y. L. and Efferth, T. (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J. Ethnopharmacol. 176: 55-68. https://doi.org/10.1016/j.jep.2015.10.020
  20. Cao, E. H., Liu, X. Q., Wang, J. J. and Xu, N. F. (1996) Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic. Biol. Med. 20: 801-806. https://doi.org/10.1016/0891-5849(95)02211-2
  21. Matkowski, A., Zielinska, S., Oszmianski, J. and Lamer-Zarawska, E. (2008) Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour. Technol. 99: 7892-7896. https://doi.org/10.1016/j.biortech.2008.02.013
  22. Liu, L., Zuo, Z., Lu, S., Liu, A. and Liu, X. (2017) Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-${\kappa}B$ activation in vivo and in vitro. Iran J. Basic Med. Sci. 20: 813-821.
  23. Farias, J. G., Molina, V. M., Carrasco, R. A., Zepeda, A. B., Figueroa, E., Letelier, P. and Castillo, R. L. (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients doi: 10.3390/nu9090966.
  24. Jing, X., Wei, X., Ren, M., Wang, L., Zhang, X. and Lou, H. (2016) Neuroprotective effects of tanshinone I against 6-OHDA-induced oxidative stress in cellular and mouse model of Parkinson's disease through upregulating Nrf2. Neurochem. Res. 41: 779-786. https://doi.org/10.1007/s11064-015-1751-6
  25. Shu, M., Hu, X. R., Hung, Z. A., Huang, D. D. and Zhang, S. (2016) Effects of tanshinone IIA on fibrosis in a rat model of cirrhosis through heme oxygenase-1, inflammation, oxidative stress and apoptosis. Mol. Med. Rep. 13: 3036-3042. https://doi.org/10.3892/mmr.2016.4886