Acknowledgement
Supported by : National Natural Science Foundation of China, Japan Society for the Promotion of Science (JSPS)
References
- Abdelrazaq, A., Amp, H. and Camp, S. (2012), "Validating the structural behavior and response of Burj Khalifa: Full scale structural health monitoring programs", Build. Struct., 44(5), 87-97.
- Breuer, P., Chmielewski, T., Gorski, P. and Konopka, E. (2002), "Application of GPS technology to measurements of displacements of high-rise structures due to weak winds", J Wind Eng Ind Aerod., 90(3), 223-230. https://doi.org/10.1016/S0167-6105(01)00221-5
- Calcaterra, S., Cesi, C., Maio, C.D., et al. (2012), "Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy", Nat. Hazards, 61(1), 257-266. https://doi.org/10.1007/s11069-010-9633-3
- Chowdhury, F.H., Islam, G.M.S. and Raihan, M.T. (2015), "Application of different structural health monitoring system on bridges an overview", IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III.
- ETABS software, Computers &Structures, INC, https://www.csiamerica.com/products/etabs
- Feng, D., Feng, M.Q. and Ozer, E. (2015), "A vision-based sensor for noncontact structural displacement measurement", Sensors, 15(7), 16557-16575. https://doi.org/10.3390/s150716557
- Guo, Z.L. (2011), "Application of structural health monitoring technology based on model shaking table test of a super high-rise building", Master Dissertation (Chinese), Tongji University, Shanghai.
- Hong, Y.H, Park, H.W. and Lee, H.S. (2008), "A regularization scheme for displacement reconstruction using acceleration data measured from structures", Proceedings of the 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 693228-693228-11
- Lam, H.F., Yang, J. and Au, S.K. (2015a), "Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm", Eng. Struct., 102, 144-155. https://doi.org/10.1016/j.engstruct.2015.08.005
- Lam H.F., Yang, J.H. and Hu, J. (2015b), "Ambient vibration test, modal identification and structural model updating following Bayesian framework", Int. J. Struct.Stab. Dynam, 15(7), 1540024. https://doi.org/10.1142/S0219455415400246
- Li, B. and Kiureghian, A.D. (2016), "Robust optimal sensor placement for operational modal analysis based on maximum expected utility", Mech. Syst. Signal Pr., 75, 155-175. https://doi.org/10.1016/j.ymssp.2016.01.005
- Li, Z.J., Park, H.S. and Adeli, H. (2017), "New method for modal identification of super high-rise building structures using discretized synchrosqueezed wavelet and Hilbert transforms", Struct Des Tall Spec., 26, (3).
- Moschas, F. and Stiros, S. (2011), "Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer", Eng. Struct., 33(1), 10-17. https://doi.org/10.1016/j.engstruct.2010.09.013
- Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct. Control Health, 16(1), 73-98. https://doi.org/10.1002/stc.303
- Ni, Y.C., Lu, X.L. and Lu, W.S. (2017), "Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach", Mech. Syst. Signal Pr., 86, 286-307. https://doi.org/10.1016/j.ymssp.2016.10.009
- Ni Y.C. and Zhang F.L. (2018), "Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect", Mech. Syst. Signal Pr., 105,113-128. https://doi.org/10.1016/j.ymssp.2017.11.007
- Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Vision-based displacement measurement method for high-rise building structures using partitioning approach", Ndt&E Int., 43(7), 642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
- Pastor, M., Binda, M. and HarCarik, T. (2012), "Modal assurance criterion", Procedia Eng., 48(1), 543-548. https://doi.org/10.1016/j.proeng.2012.09.551
- Pei, H., Cui, P., Yin, J., et al. (2011), "Monitoring and warning of landslides and debris flows using an optical fiber sensor technology", J. Mountain Sci., 8(5), 728-738. https://doi.org/10.1007/s11629-011-2038-2
- Pei, H.F., Yin, J.H., Zhu, H.H., et al. (2012), "Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers", Meas. Sci.Technol., 23(2), 025007. https://doi.org/10.1088/0957-0233/23/2/025007
- Quan, Y., Gu, M. and Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. https://doi.org/10.12989/was.2005.8.5.309
- Simeoni, L. and Mongiovì, L. (2007), "Inclinometer monitoring of the Castelrotto Landslide in Italy", J. Geotech. Geoenviron. Eng., 133(6), 653-666. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(653)
- Su, J.Z., Xia, Y., Zhu, L.D. and Zhu, H.P. and Ni, Y.Q.(2017), "Typhoon and temperature-induced quasi-static responses of a supertall structure", Eng. Struct., 143, 91-100. https://doi.org/10.1016/j.engstruct.2017.04.007
- Su, J.Z., Xia, Y. and Chen, L. (2013), "Long-term structural performance monitoring system for the Shanghai Tower", J. Civil. Struct. Health Monit., 3(1), 49-61. https://doi.org/10.1007/s13349-012-0034-z
- Wahbeh, A.M., Caffrey, J.P. and Masri, S.F. (2003), "A vision-based approach for the direct measurement of displacements in vibrating systems", Smart Mater Struct., 12(5), 785-794. https://doi.org/10.1088/0964-1726/12/5/016
- Guo, Z.L. (2011), "Application of structural health monitoring technology based on model shaking table test of a super high-rise building", Master Dissertation (Chinese), Tongji University, Shanghai.
- Xiong, H.B., Cao, J.X. and Zhang, F.L. (2016), "Displacement monitoring method for frame tube structure with strengthened stories", J. Zhejiang University (Engineering Science) (Chinese), 59(9), 1752-1760.
- Xie, Z.N. and Gu, M. (2009), "Across-wind dynamic response of high-rise building under wind action with interference effects from one and two tall buildings", Struct. Des. Tall Spec., 18(1), 37-57. https://doi.org/10.1002/tal.393
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control Health, 20(5), 649-670. https://doi.org/10.1002/stc.1501
- Zhang, F.L., Ni, Y.Q., Ni, Y.C. and Wang, Y.W. (2016a), "Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method", Smart Struct. Syst., 17(2), 209-230. https://doi.org/10.12989/sss.2016.17.2.209
- Zhang, F.L., Ni, Y.C., Au, S.K. and Lam, H.F. (2016b), "Fast Bayesian approach for modal identification using free vibration data, Part I-Most probable value", Mech. Syst. Signal Pr., 70-71, 209-220. https://doi.org/10.1016/j.ymssp.2015.05.031
- Zhang, F.L., Ni, Y.C. and Lam, H.F. (2017a), "Bayesian structural model updating using ambient vibration data collected by multiple setups", Struct. Control Health Monit., 24(12), e2023 https://doi.org/10.1002/stc.2023
- Zhang, F.L., Ventura, C.E., Xiong, H.B., et al. (2018), "Evaluation of the dynamic characteristics of a super tall building using data from ambient vibration and shake table tests by a Bayesian approach", Struct. Control Health Monit., 25(4), e2121. https://doi.org/10.1002/stc.2121
- Zhang, F.L., Xiong, H.B., Shi, W.X. and Ou, X. (2016c), "Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach", Struct. Control Health Monit., 23(11), 1366-1384. https://doi.org/10.1002/stc.1840
- Zhang, J., Maes, K., Roeck, G.D., et al. (2017b), "Optimal sensor placement for multi-setup modal analysis of structures", J. Sound Vib., 401, 214-232. https://doi.org/10.1016/j.jsv.2017.04.041
Cited by
- Inclinometer-Based Long-Term Monitoring of the Headframe of Salt Mine Shaft vol.1945, pp.1, 2018, https://doi.org/10.1088/1742-6596/1945/1/012009