DOI QR코드

DOI QR Code

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation

양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절

  • Received : 2016.12.19
  • Accepted : 2017.08.30
  • Published : 2018.03.30

Abstract

The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

$90^{\circ}C$ 이하의 저온열원 구동 수분 흡착식 냉방 시스템에 사용되는 흡착제는 효과적인 냉열 생산을 위해서 상대습도($P/P_0$) 0.1 ~ 0.3에서 높은 수분 흡-탈착량 차를 보이는 것이 좋다. 메조다공성 실리카(MCM-41)와 다공성 유기-금속 구조체(MIL-101) 의 경우 최대 수분 흡착량은 많지만 상대습도($P/P_0$) 0.1 ~ 0.3 구간에서 각각 $0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$의 낮은 수분 흡-탈착량 차를 갖는다. 이 연구에서는 메조다공성 실리카와 다공성 유기-금속 구조체의 표면 성질을 조절하여 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차를 증가시켰다. 주로 수분 흡착이 상대습도($P/P_0$) 0.5 ~ 0.7에서 일어나는 메조 다공성 실리카의 경우 알루미늄을 관능화 시킨 후에 염기도가 다른 여러 양이온($Na^+$, ${NH_4}^+$, $(C_2H_5)_4N^+$)들로 교환하거나 염($CaCl_2$)을 20 wt% 함침하여 각각의 흡착제들에 대해 $35^{\circ}C$에서 수분 흡착 등온선을 측정하였다. 양이온 교환 후 수분 흡착이 주로 일어나는 구간이 상대습도($P/P_0$) 0.5 부근으로 이동하였으나 여전히 상대습도($P/P_0$) 0.1 ~ 0.3에서 낮은 수분 흡-탈착량 차를 보였다. 하지만 흡습성을 갖는 염($CaCl_2$)을 20 wt% 함침한 메조다공성 실리카는 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.027{g_{water}\;g_{ads}}^{-1}$에서 $0.152{g_{water}\;g_{ads}}^{-1}$으로 증가하였다. 수분 흡착이 상대습도($P/P_0$) 0.3 ~ 0.5에서 주로 일어나는 다공성 유기-금속 구조체에도 염($CaCl_2$)을 20 wt% 함침하였더니 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.330{g_{water}\;g_{ads}}^{-1}$까지 증가하였다.

Keywords

References

  1. Wang, L. W., Wang, R. Z., and Oliveira, R. G., "A Review on Adsorption Working Pairs for Refrigeration," Renew Sustain. Energy Rev., 13(3), 518-534 (2009). https://doi.org/10.1016/j.rser.2007.12.002
  2. Hong, S. W., Ahn, S. H., Kwon, O. K., and Chung, J. D., "Validity of Intra-Particle Models of Mass Transfer Kinetics in The Analysis of A Fin-Tube Type Adsorption Bed," J. Mech. Sci. Technol., 28(5), 1985-1993 (2014). https://doi.org/10.1007/s12206-014-0347-4
  3. Hong, S. W., Ahn, S. H., Kwon, O. K., and Chung, J. D., "Optimization of A Fin-Tube Type Adsorption Chiller by Design of Experiment," Int. J. Refrig., 49, 49-56 (2015). https://doi.org/10.1016/j.ijrefrig.2014.09.022
  4. Hong, S. W., Kwon, O. K., and Chung, J. D., "Effect on The Switching Time on The Performance of Adsorption Chiller," J. Mech. Sci. Technol., 30(5), 2387-2395 (2016). https://doi.org/10.1007/s12206-016-0449-2
  5. Hong, S. W., Kwon, O. K., and Chung, J. D., "Application of An Embossed Plate Heat Exchanger to Adsorption Chiller," Int. J. Refrig., 65, 142-153 (2016). https://doi.org/10.1016/j.ijrefrig.2016.02.012
  6. Meunier, F., "Adsorption Heat Powered Heat Pumps," Appl. Therm. Eng., 61(2), 830-836 (2013). https://doi.org/10.1016/j.applthermaleng.2013.04.050
  7. Clausse, M., Alam, K. C. A., and Meunier, F., "Residential Air Conditioning and Heating by Means of Enhanced Solar Collectors Coupled to An Adsorption System," Sol. Energy., 82(10), 885-892 (2008). https://doi.org/10.1016/j.solener.2008.04.001
  8. Kayal, S., Baichuan, S., and Saha, B. B., "Adsorption Characteristics of AQSOA Zeolites and Water for Adsorption Chillers," Int. J. Heat Mass Transfer, 92, 1120-1127 (2013).
  9. Hong, S. W., Ahn, S. H., Chung, J. D., Bae, K. J., Cha, D. A., and Kwon, O. K., "Characteristics of FAM-Z01 Compared to Silica Gels in The Performance of an Adsorption Bed," Appl. Therm. Eng., 104, 24-33 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.058
  10. Li, T. X., Wang, R. Z., and Li, H., "Progress in The Development of Solid-Gas Sorption Refrigeration Thermodynamic Cycle Driven by Low-Grade Thermal Energy," Prog. Energy Combust. Sci., 40, 1-58 (2014). https://doi.org/10.1016/j.pecs.2013.09.002
  11. Brown, J. S., and Domanski, P. A., "Review of Alternative Cooling Technologies," Appl. Therm. Eng., 64(1-2), 252-262 (2014). https://doi.org/10.1016/j.applthermaleng.2013.12.014
  12. Niazmand, H., Talebian, H., and Mahdavikhah, M., "Bed Geometrical Specifications Effects on The Performance of Silica/Water Adsorption Chillers," Int. J. Refrig., 35(8), 2261-2274 (2012). https://doi.org/10.1016/j.ijrefrig.2012.08.017
  13. Zhang, L. Z., and Wang, L., "Effects of Coupled Heat and Mass Transfers in Adsorbent on The Performance of A Waste Heat Adsorption Cooling Unit," Appl. Therm. Eng., 19(2), 195-215 (1999). https://doi.org/10.1016/S1359-4311(98)00023-4
  14. Saha, B. B., Chakraborty, A., Koyama, S., and Aristov, Y. I., "A New Generation Cooling Device Employing $CaCl_2$-in-Silica Gel-Water System," Int. J. Heat Mass Transfer, 52 (1-2), 516-524 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.018
  15. Aristov, Y. I., Restuccia, G., Cacciola, G., and Parmon, V. N., "A Family of New Working Materials for Solid Sorption Air Conditioning Systems," Appl. Therm. Eng., 22(2), 191-204 (2002). https://doi.org/10.1016/S1359-4311(01)00072-2
  16. Aristov, Y. I., "New Composite Adsorbents for Conversion and Storage of Low Temperature Heat: Activity in The Boreskov Institute of Catalysis," J. Heat Transfer Soc. Jpn., 45 (192), 12-19 (2006).
  17. Aristov, Y. I., "New Family of Materials for Adsorption Cooling: Material Scientist Approach," J. Eng. Thermophys., 16(2), 63-72 (2007). https://doi.org/10.1134/S1810232807020026
  18. Tso, C. Y., Chan, K. C., Chao, C. Y. H., and Wu, C. L., "Experimental Performance Analysis on An Adsorption Cooling System Using Zeolite 13X/$CaCl_2$ Adsorbent with Various Operation Sequences," Int. J. Heat Mass Transfer, 85, 343-355 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.005
  19. Aristov, Y. I., and Vasiliev, L. L., "New Composite Sorbents of Water and Ammonia for Chemical and Adsorption Heat Pumps," J. Eng. Thermophys., 79(6), 1214-1229 (2006). https://doi.org/10.1007/s10891-006-0225-8
  20. Gordeeva, L. G., Savchenko, E. V.. Glaznev, I. S., Malakhov, V. V., and Aristov, Y. I., "Impact of Phase Composition on Water Adsorption on Inorganic Hybrides Salt/Silica," J. Colloid Interface Sci., 301(2), 685-691 (2006). https://doi.org/10.1016/j.jcis.2006.05.009
  21. Ng., K. C., Chua, H. T., Chung, C. Y., Loke, C. H., Kashiwagi, T., Akisawa, A., and Saha, B. B., "Experimental Investigation of The Silica Gel-Water Adsorption Isotherm Characteristics," Appl. Therm. Eng., 21(16), 1631-1642 (2001). https://doi.org/10.1016/S1359-4311(01)00039-4
  22. Meunier, F., "Theoretical Performances of Solid Adsorbent Cascading Cycles Using The Zeolite-Water and Active Carbon-Methanol Pairs: Four Case Studies," J. Heat. Recov. Syst., 6(6), 491-498 (1986). https://doi.org/10.1016/0198-7593(86)90042-1
  23. Kawano, T., Kubota, M., Onyango, M. S., Watanabe, F., and Matsuda, H., "Preparation of Activated Carbon from Petroleum Coke by KOH Chemical Activation for Adsorption Heat Pump," Appl. Therm. Eng., 28(8-9), 865-871 (2008). https://doi.org/10.1016/j.applthermaleng.2007.07.009
  24. Kittaka, S., Ueda, Y., Fujisaki, F., Iiyama, T., and Yamaguchi, T., "Mechanism of Freezing of Water in Contact with Mesoporous Silicas MCM-41, SBA-15 and SBA-16: Role of Boundary Water of Pore Outlets in Freezing," Phys. Chem. Chem. Phys., 13, 17222-17233 (2011). https://doi.org/10.1039/c1cp21458f
  25. Jeremias, F., Froehlich, D., Janiak, C., and Henninger, S. K., "Water and Methanol Adsorption on MOFs for Cycling Heat Transformation Processes," New J. Chem., 38, 1846-1852 (2014). https://doi.org/10.1039/C3NJ01556D
  26. Furukawa, H., Gandara, F., Zhang, Y. B., Jiang, J., Queen, W. L., Hudson, M. R., and Yaghi, O. M., "Water Adsorption in Porous Metal-Organic Frameworks and Related Materials," J. Am. Chem. Soc., 136(11), 4369-4381 (2014). https://doi.org/10.1021/ja500330a
  27. Kim, S. N., Yang, S. T., Kim, J., Park, J. E., and Ahn, W. S., "Post-Synthetic Modification of Coordination Networks," CrystEngComm., 14, 4142-4147 (2012). https://doi.org/10.1039/c2ce06608d
  28. Aristov, Y. I., "Challenging Offers of Material Science for Adsorption Heat Transformation: A Review," Appl. Therm. Eng., 50(2), 1610-1618 (2013). https://doi.org/10.1016/j.applthermaleng.2011.09.003
  29. Glaznev, I., Ponomarenko, I., Kirik, S., and Aristov, Y. I., "Composites $CaCl_2$/SBA-15 for Adsorptive Transformation of Low Temperature Heat: Pore Size Effect," Int. J. Refrig., 34(5), 1244-1250 (2011). https://doi.org/10.1016/j.ijrefrig.2011.02.007
  30. Tokarev, M., Gordeeva, L., Rommanikov, V., and Glaznev, I., "New Composite Sorbent $CaCl_2$ in Mesopores for Sorption Cooling/Heating," Int. J. Therm. Sci., 41(5), 470-474 (2002). https://doi.org/10.1016/S1290-0729(02)01339-X
  31. Kim, C., Cho, K., Kim, S. K., Lee, E. K., Kim, J. N., and Choi, M., "Alumina-Coated Ordered Mesoporous Silica as An Efficient and Stable Water Adsorbent for Adsorption Heat Pump," Micropor. Mesopor. Mater., 239, 310-315 (2017). https://doi.org/10.1016/j.micromeso.2016.10.014
  32. Kim, Y. -D., Thu, K., and Ng, K. C., "Adsorption Characteristics of Water Vapor on Ferroaluminophosphate for Desalination cycle," Desalination, 344, 350-356 (2014). https://doi.org/10.1016/j.desal.2014.04.009
  33. Cho, K., Kim, S. K., Lee, E. K., and Kim, J. N., "Fine Control of Water-Adsorption Properties of Crystalline Microporous Aluminophosphates by Changing Porous Structure and Framework Composition for Application in Water Adsorption Chiller," J. Nanosci. Nanotechnol., 17(8), 5869-5877 (2017). https://doi.org/10.1166/jnn.2017.13838
  34. Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., and Margiolaki, I., "A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area," Science, 309(5743), 2040-2042 (2005). https://doi.org/10.1126/science.1116275