DOI QR코드

DOI QR Code

층류경계층 내 반구 전방의 국부적인 흡입에 의한 표면 박리 제어

A Study on Separation Control by Local Suction in Front of a Hemisphere in Laminar Flow

  • 강용덕 (동의대학교 조선해양공학과) ;
  • 안남현 (거제대학교 조선해양공학과)
  • Kang, Yong-Duck (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • An, Nam-Hyun (Department of Naval Architecture and Ocean Engineering, Koje College)
  • 투고 : 2018.01.03
  • 심사 : 2018.02.26
  • 발행 : 2018.02.28

초록

난류경계층이 유지되기 위한 에너지 공급은 경계층 내 구조물인 와류들의 상호작용으로 끊임없이 이루어진다. 이러한 난류 유동은 수송분야의 마찰저항 및 해양구조물의 침식 및 진동을 유발하기 때문에 유동 제어를 위한 연구가 활발히 진행되고 있다. 이러한 제어의 극대화를 위해서는 난류 에너지 전달이 어떻게 이루어지는지에 대한 메카니즘 규명이 필수적이고, 이를 위해서는 층류경계층 내 유동현상으로 파악하는 것이 명확하고 용이하다는 장점이 있다. 따라서, 본 연구에서는 층류경계층 내 평판에 반구를 설치하여 역압력구배을 발생시킴으로써 교란된 유동현상의 상호작용을 분석하였다. 즉, 반구를 둘러싼 목걸이 와류와 반구 표면의 유동 박리에 의한 후류영역에서 머리핀 와류가 생성되어 상호 유기적으로 영향을 주고받는다. 이 과정에서 목걸이 와류는 후류영역으로 높은 운동량의 유체를 유입시켜 머리핀 와류의 발생 주파수를 증가시킨다. 반구 전방에 구멍을 뚫어 국부적인 흡입제어로 목걸이 와류의 와도를 감소시킴으로써 그 영향이 완화되는 과정을 유동 가시화 및 열선유속계로 측정하여 정성 및 정량적으로 분석하였다.

Vortical systems are considered a main feature to sustain turbulence in a boundary layer through interaction. Such turbulent structures result in frictional drag and erosion or vibration in engineering applications. Research for controlling turbulent flow has been actively carried out, but in order to show the effect of vortices in a turbulent boundary layer, it is necessary to clarify the mechanism by which turbulent energy is transferred. For this purpose, it is convenient to demonstrate and capture phenomena in a laminar boundary layer. Therefore, in this study, the interactions of disturbed flow around a hemisphere on a flat plate in laminar flow were analyzed. In other words, a street of hairpin vortices was generated following a wake region formed after flow separation occurred over a hemisphere. Necklace vortices surrounding the hemisphere also appeared due to a strong adverse pressure gradient that brought high momentum fluid into the wake region thereby leading to an increase in the frequency of hairpin vortices. To mitigate the effect of these necklace vortices, local suction control was applied through a hole in front of the hemisphere. Flow visualization was recorded to qualitatively determine flow modifications, and hot-film measurements quantitatively supported conclusions on how much the power of the hairpin vortices was reduced by local wall suction.

키워드

참고문헌

  1. Acarlar, M. S. and C. R. Smith(1984), An Experimental Study of Hairpin-Type Vortices as a Potential Flow Structure of Turbulent Boundary Layers, Report FM-5, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015.
  2. Acarlar, M. S. and C. R. Smith(1987), A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 2. Hairpin Vortices Generated by Fluid Injection, J. Fluid Mech., Vol. 175, pp. 43-83.
  3. Baker, C. J.(1985), The Position of Points of Maximum and Minimum Shear Stress Upstream of Cylinders Mounted normal to Flat Plates, J. Wind Engineering and Industrial Aerodynamics, Vol. 18, pp. 263-274. https://doi.org/10.1016/0167-6105(85)90085-6
  4. Doligalski, T. L., C. R. Smith and J. D. A. Walker(1994), Vortex Interactions with Walls, Ann. Rev. Fluid Mech., Vol. 26, pp. 573-616. https://doi.org/10.1146/annurev.fl.26.010194.003041
  5. Greco, J. J.(1990), The Flow Structure in the Vicinity of a Cylinder-Flat Plate Junction : Flow Regimes, Periodicity, and Vortex Interactions, MS Thesis, Lehigh University.
  6. Hung, C. M., C. H. Sung and C. L. Chen(1992), Computation of Saddle Point of Attachment, AIAA J., 30, No. 6, pp. 1561-1569. https://doi.org/10.2514/3.11101
  7. Hwang, J. Y. and K. S. Yang(2004), Numerical Study of Vortical Structures around a Wall-Mounted Cubic Obstacle in Channel Flow, Phys. Fluids, Vol. 16, No. 7, pp. 2382-2394. https://doi.org/10.1063/1.1736675
  8. Rizzetta, D. P.(1994), Numerical Simulation of Turbulent Cylinder Junction Flowfields, AIAA J., Vol. 32, No. 6, pp. 1113-1119. https://doi.org/10.2514/3.12109
  9. Robinson, S. K.(1990), A Perspective on Coherent Structures and Conceptual Models for Turbulent Boundary Layer Physics, AIAA Paper No. 90-1638, pp. 1-16.
  10. Schlichting, H.(1968), Boundary-Layer Theory, McGraw-Hill
  11. Seal, C. V., C. R. Smith, O. Akin and D. Rockwell(1995), Quantitative Characteristics of a Laminar, Unsteady Necklace Vortex System at a Rectangular Block-Flat Plate Juncture, J. Fluid Mech., 286, pp. 117-135. https://doi.org/10.1017/S002211209500067X
  12. Seal, C. V., C. R. Smith and D. Rockwell(1997), Dynamics of the Vorticity Distribution in Endwall Junctions, AIAA J., 35, No. 6, pp. 1041-1047. https://doi.org/10.2514/2.192
  13. Shin, S. Y., K. H. Jung, Y. D. Kang, S. B. Suh, J Kim, N. H. An(2017), A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis, Journal of the Society of Naval Architects of Korea, 54, No. 5, pp. 406-414. https://doi.org/10.3744/SNAK.2017.54.5.406
  14. Thomas, A. S. W.(1987), The Unsteady Characteristics of Laminar Juncture Flow, Phys. Fluids, 30, No. 2, pp. 283-285. https://doi.org/10.1063/1.866374
  15. Toy, N. and E. Savory(1983), Turbulent Shear Flow in the Near Wake of a Hemisphere, Proceedings of the 8th Symposium on Turbulence, pp. 145-156.
  16. Tufo, H. M., P. F. Fischer, M. E. Papka and M. Szymanski(1999), Hairpin Vortex Formation, a Case Study for Unsteady Visualisation, 41st CUG Conference.
  17. Visbal, M. R.(1991), Structure of Laminar Juncture Flows, AIAA J., 29, No. 8, pp. 1273-1282. https://doi.org/10.2514/3.10732
  18. Zondag, H. A.(1997), The Dynamics of Hairpin Vortices in a Laminar Boundary Layer, PhD Thesis, University of Eindhoven.