DOI QR코드

DOI QR Code

Analysis of Bacterial Spot Disease in Red Pepper Caused by Increase of CO2 Concentration

CO2 농도 상승 효과에 의한 고추 세균점무늬병 발병 양상 분석

  • 장종옥 (농촌진흥청, 국립원예특작과학원, 온난화대응농업연구소) ;
  • 김병혁 (농촌진흥청, 국립원예특작과학원, 온난화대응농업연구소) ;
  • 문두경 (농촌진흥청, 국립원예특작과학원, 온난화대응농업연구소) ;
  • 고상욱 (농촌진흥청, 국립원예특작과학원, 온난화대응농업연구소) ;
  • 좌재호 (농촌진흥청, 국립원예특작과학원, 감귤연구소)
  • Received : 2017.08.28
  • Accepted : 2018.01.05
  • Published : 2018.03.28

Abstract

An increase in $CO_2$ will affect plant pathogenic microorganisms, the resistance of host plants, and host-pathogen interactions. This study used Capsicum annuum and Xanthomonas euvesicatoria, a pathogenic bacterium of pepper, to investigate the interactions between hosts and pathogens in conditions of increased $CO_2$ concentrations. Our analysis of disease resistance genes under 800 ppm $CO_2$ using quantitative RT-PCR showed that the expression of CaLRR1, CaPIK1, and PR10 decreased, but that of negative regulator WRKY1 increased. Additionally, the disease progress and severity was higher at 800 ppm than 400 ppm $CO_2$. These results will aid in understanding the interaction between red pepper and X. euvesicatoria under increased $CO_2$ concentrations in the future.

$CO_2$의 상승은 식물 병원성 미생물의 발병력과 기주 식물의 저항성에 영향을 미칠 것이며, 기주와 병원체의 상호 작용에도 영향을 미칠 것으로 예상된다. 본 연구는 $CO_2$ 상승 환경에서 기주와 병원체간의 상호 작용을 연구하기 위하여 고추(Capsicum annuum)와 세균점무늬병을 유발하는 X. euvesicatoria를 이용하였다. 고추 식물체의 병저항성 관련 유전자인 CaLRR1, CaWRKY1, CaPIK1 그리고 CaPR10 유전자를 quantitative RT-PCR로 분석한 결과 800 ppm에서 CaLRR1, CaPIK1 그리고 PR10 유전자의 발현이 감소하였으며, negative regulator인 CaWRKY1 유전자는 발현이 증가하였다. 400 ppm과 800 ppm의 $CO_2$ 농도에서 이병엽률과 발병도를 확인 한 결과 800 ppm에서 발병도가 증가된 것을 확인하였다. 이들 결과는 미래의 $CO_2$ 농도가 증가 된 환경에서 고추와 고추의 주요 피해 병원균인 X. euvesicatoria에 의한 고추 세균점무늬병의 발병 양상을 이해하는 기초 자료로 활용할 수 있을 것이다.

Keywords

References

  1. Jones C, Robertson E, Arora V, Friedlingstein P, Shevliakova E, Bopp L, et al. 2016. Twenty-first-century compatible $CO_2$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clinmate. 26: 4398-4413.
  2. Coakley SM, Seherm H, Chakraborty S. 1999. Climate change and plant disease menagement. Annu. Rev. Phytopathol. 37: 399-426. https://doi.org/10.1146/annurev.phyto.37.1.399
  3. Manning WJ, Tiedemann AN. 1995. Climate change: Potential effects of increased atmospheric carbon dioxide ($CO_2$), ozone (O3), and ultraviolet (UV-B), radiation on plant diseases. Environ. Pollut. 88: 219-245. https://doi.org/10.1016/0269-7491(95)91446-R
  4. Wells JM. 1974. Grwoth of Erwinia carotovora, E. atroseptica and Pseudomonas fluorescens in low oxygen and high carbon dioxide atmospheres. Phyopathol. 64: 1012-1015. https://doi.org/10.1094/Phyto-64-1012
  5. Mitchell DJ, Zentmyer GA. 1971. Effect of oxygen and carbon dioxide tensions on gowth of several species of Phytophthora. Phyopathol. 61: 787-791. https://doi.org/10.1094/Phyto-61-787
  6. Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, et al. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutr. Nat. Resour. 3: 1-15.
  7. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, et al. 2002. Altered performance of forest pests under atmospheres enriched by $CO_2$ and $O_3$. Nature 420: 403-407. https://doi.org/10.1038/nature01028
  8. Mesarich CH, Stergiopoulos I, Beenen HG, Cordovez V, Guo Y, Jashni MK, et al. 2016. A conserved proline residue in dothideomycete Avr4 effector proteins is required to trigger a Cf-4- dependent hypersensitive response. Mol. Plant Pathol. 17: 84-95. https://doi.org/10.1111/mpp.12265
  9. Roeschlin RA, Favaro MA, Chiesa MA, Alemano S, Vojnov AA, Castagnaro AP, et al. 2017. Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Mol. Plant Pathol. 18: 1267-1281. https://doi.org/10.1111/mpp.12489
  10. Hayashi K, Fujita Y, Ashizawa T, Suzuki F, Nagamura Y, Hayano- Saito Y. 2016. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant J. 2016: 46-56.
  11. Guo A, Salih G, Klessig DF. 2000. Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a sibset is also ethylene independent. Plant J. 21: 409-418.
  12. Nurnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
  13. Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat- Michel A, et al. 2016. Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Molecular Plant. 9: 662-681. https://doi.org/10.1016/j.molp.2016.01.005
  14. Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, et al. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through NPR1-and SAdependent signaling pathoway. Biochem. Bioph. Res. Co. 469: 120-125.
  15. Kim DS, Kim NH, Hwang BK. 2015. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. J. Exp. Bot. 66: 1987-1999. https://doi.org/10.1093/jxb/erv001
  16. Kim NH, Kim DS, Chung EH, Hwang BK. 2014. Pepper suppressor of the G2 Allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in an phosphorylation dependent manner. Plant Physiol. 165: 76-91. https://doi.org/10.1104/pp.114.238840
  17. Caddell DF, Park C-J, Thomas NC, Canlas PE, Ronald PC. 2017. Silencing of the rice gene LRR1 compromises rice Xa21 transcript accumulation and XA21-mediated immunity. RICE. 10: 1-11. https://doi.org/10.1186/s12284-016-0141-2
  18. Huang L-F, Lin K-H, He S-L, Chen J-L, Jiang J-Z, Chen B-H, et al. 2016. Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene, OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One 11: 1-27.
  19. Qiao Z, Li C-L, Zhang W. 2016. WRKY1 regulates stomatal movement in drought stressed Arabidopsis Thaliana. Plant Mol. Biol. 91: 53-65. https://doi.org/10.1007/s11103-016-0441-3
  20. Konda AK, Farmer R, Soren KR, S. SP, Setti A. 2017. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea. J. Biomol. Struct. Dyn. 1-13.
  21. Park J-H, Park S-J, Kwon O-H, Choi S-Y, Park S-D, Kim J-E. 2015. Effect of mixed treatment of nitrogen fertilizer and zeolite on soil chemical properties and growth of hot pepper. Korean J. Soil Sci. Fert. 48: 44-49. https://doi.org/10.7745/KJSSF.2015.48.1.044
  22. Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, et al. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria - pepper interactions. Mol. Plant Microbe. Interact. 3: 41-47. https://doi.org/10.1094/MPMI-3-041
  23. Dangle JL, Jones JDG. 2001. Plant pathogens and intergrated defense response to infection. Nature 411: 826-833. https://doi.org/10.1038/35081161
  24. Kobe B, Deisenhofer J. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19: 415-421. https://doi.org/10.1016/0968-0004(94)90090-6
  25. Jung HW, Hwang BK. 2007. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol. Plant Pathol. 8: 503-514.
  26. Hong JK, Hwang IS, Hwang BK. 2017. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. Planta 246: 351-364.
  27. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819: 120-128. https://doi.org/10.1016/j.bbagrm.2011.09.002
  28. Tang M, Lu S, Jing Y, Shou X, Sun J, Shen S. 2005. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol. Biochem. 43: 233-239. https://doi.org/10.1016/j.plaphy.2005.01.015
  29. Eulgem T. 2006. Dissecting the WRKY web of plant defense regulators. PLos Pathogens. 2: 1028-1030.
  30. Oh S-K, Baek K-H, Park JM, Yi SY, Yu SH, Kamoun S, et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 177-989.
  31. Johnson LN, Noble MEM, Owen DJ. 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85: 149-158. https://doi.org/10.1016/S0092-8674(00)81092-2
  32. Afzal AJ, Wood AJ, Lightfoot DA. 2008. Plant receptor like serine threonine kinase: roles in signaling and plant defense. Mol. Plant Microbe. Interact. 21: 507-517. https://doi.org/10.1094/MPMI-21-5-0507
  33. Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, et al. 2007. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J. 52: 1066-1079. https://doi.org/10.1111/j.1365-313X.2007.03294.x
  34. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez- Gomez L, et al. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983. https://doi.org/10.1038/415977a
  35. Kim DS, Hwang BK. 2011. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J. 66: 642-655. https://doi.org/10.1111/j.1365-313X.2011.04525.x
  36. Leon J, Yalpani N, Raskin I, Lawton MA. 1993. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol. 103: 323-328. https://doi.org/10.1104/pp.103.2.323
  37. van Loon LC, van Strein EA. 1999. The families of pathogenesisrelated proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant P. 55: 85-97.
  38. Upadhyay P, Rai A, Kumar R, Singh M, Sinha B. 2014. Differential expressiion of pathogenesis related protein genes in tomato during inoculation with A. solani. J. Plant Pathol. Microb. 5: 217.
  39. Lo S-CC, Hipskind JD, Nicholson RL. 1999. cDNA cloning of sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Collectotrichum sublineolum. Mol. Plant Microbe Interact. 12: 479-489. https://doi.org/10.1094/MPMI.1999.12.6.479
  40. Van Loon LC, Pierpoint WS, Boller TH. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 12: 245-264. https://doi.org/10.1007/BF02668748
  41. Guevara-Morato MA, Lacoba MGd, Garcia-Luque I, Serra MT. 2010. Characterization of a pathogenesis-related protein 4 (PR- 4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities. J. Exp. Bot. 61: 3259-3271.
  42. Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H. 2004. Pathogenesis-related protein 10 isolated from hot pepper funtion as a ribonuclease in an antiviral pathway. Plant J. 37: 186-198. https://doi.org/10.1046/j.1365-313X.2003.01951.x
  43. Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK. 2014. Pathogenesis- related protein 4b interacts with leucine-rich repeat protein 1 to suppress PR4b-triggered cell death and defense response in pepper. Plant J. 77: 521-533. https://doi.org/10.1111/tpj.12400
  44. Hipskind JD, Nicholson RL, Goldsbrough PB. 1996. Isolation of a cDNA encoding a novel leucine-rich repeat motif from Sorghum bicolor inoculated with fungi. Mol. Plant Microbe. Interact. 9: 819-825. https://doi.org/10.1094/MPMI-9-0819
  45. Moon J-C, Kim JY, Beak S-B, Kwon Y-U, Song K, Lee B-M. 2014. Transcription factor for gene funtion analysis in maize. Korean J. Crop Sci. 59: 263-281. https://doi.org/10.7740/kjcs.2014.59.3.263
  46. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. https://doi.org/10.1016/S1360-1385(00)01600-9
  47. Oh S-K, Baek K-H, Park JM, Yi SY, Yu SH, Kamoun S, et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 977-989. https://doi.org/10.1111/j.1469-8137.2007.02310.x
  48. Shiu SH, Bleecker AB. 2003. Expansion of the receptor-like kinase/Pelle gene famil and receptor-like proteins in Arabidopsis. Plant Physiol. 132: 530-543.
  49. Shiu SH, Bleecker AB. 2001. Receptor-like kinases from Arabidopsis form a nomophyletic gene family elated to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98: 10763-10768. https://doi.org/10.1073/pnas.181141598
  50. Duner J, Shah J, Klessig DF. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2: 226-274.
  51. Ecker JR. 1995. The ethylene signal transduction pathway in plants. Science 268: 667-675. https://doi.org/10.1126/science.7732375
  52. Ziadi A, Poupard P, Brisset MN, Paulin JP, Simoneau P. 2001. Characterization in apple leaves of two subclasses of PR-10 transcrips inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid Physiol. Mol. Plant P. 59: 33-43. https://doi.org/10.1006/pmpp.2001.0343
  53. Wang CS, Huang JC, Hu JH. 1999. Characterization of two subclasses of PR-10 transctipts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814.
  54. Jones JB, Stall RE, Bouzar H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annurev. Phyto. 36: 41-58.
  55. B.Jonesa. J, Lacy GH, Bouzar H, Stall RE, Schaad NW. 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. System Appl. Microbiol. 27: 755-762. https://doi.org/10.1078/0723202042369884
  56. Byeon SE , Abebe AM, Jegal YH, Wai KPP, Siddique MI, Mo HS et al. 2016. Characterization of sources of resistance to bacterial spot in Capsicum peppers. Kor. J. Hort. Sci. Technol. 34: 779-789.
  57. Shin J-W, Yun S-C. 2010. Elevated $CO_2$ and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184. https://doi.org/10.5423/PPJ.2010.26.2.178
  58. Silvar C, Merino F, Diaz J. 2008. Differential activation of defense-related genes in susceotible and resistant pepper cultivars infected with Phytophthora capsici. J. Plant Physiol. 165: 1120-1124.
  59. Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, et al. 2017. Functional and promoter analysis of ChiIV3, a chitinase of pepper plant, in response to Phytophthora capsici infection. Int. J. Mol. Sci. 18: 1661. https://doi.org/10.3390/ijms18081661
  60. Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D. 2000. Production and dispersal of Collectotrichum gloeosporioides spores on Stylosanthes scabra under elevated $CO_2$. Environ. Pollut. 108: 381-387. https://doi.org/10.1016/S0269-7491(99)00217-1
  61. Hibberd JM, Whitbread R, Farrar JF. 1996. Effect of elevated concentrations of $CO_2$ on infection of barley by Erysiphe graminis. Physiol. Mol. Plant P. 48: 37-53. https://doi.org/10.1006/pmpp.1996.0004
  62. Bettarini I, Vaccari FP, Miglietta F. 1998. Elevated $CO_2$ concentrations and stomatal density observations from 17 plant species growing in a $CO_2$ spring in central Italy. Glob. Change Biol. 4: 17-22. https://doi.org/10.1046/j.1365-2486.1998.00098.x

Cited by

  1. 온도변화에 따른 건조 스트레스 환경에서 고추 세균점무늬병 발생 영향 vol.25, pp.2, 2018, https://doi.org/10.5423/rpd.2019.25.2.62