참고문헌
- Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrob. Agent. Chemother. 20: 814-820. https://doi.org/10.1128/AAC.20.6.814
- Linda ST, David MW, Robert FB, Leland SP. 1990. Production of the antibiotic phenazin-1- carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908-912.
- Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576. https://doi.org/10.1080/00021369.1964.10858275
- Howell CR, Stipanovic RD. 1980. Suppression of Pythium ultimum- induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotics, pyoluteorin. Phytopathology 70: 712-715. https://doi.org/10.1094/Phyto-70-712
- Cox CD, Rinehart Jr. KL, Moore ML, Cook Jr. JC. 1981. Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Pro. Natl. Acad. Sci. USA 78: 4256-4260. https://doi.org/10.1073/pnas.78.7.4256
- Shanahan P, O'Sullivan DJ, Simpson P, Glennon JD, O'Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358.
- Vandenbergh PA, Gonzales CF, Wright AM, Kunka BS. 1983. Ironchelating compounds produced by soil Pseudomonas: Correlation with fungal growth inhibition. Appl. Environ. Microbiol. 46: 128-132.
- Cornelis P, Matthijs S. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4: 787-798.
- Sheldon JR, Heinrichs DE. 2015. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol. Rev. 39: 592-630.
- Endicott NP, Lee E, Wencewicz TA. 2017. Structural basis for xenosiderophore utilization by the human pathogen Staphylococcus aureus. ACS Infect. Dis. 3: 542-553. https://doi.org/10.1021/acsinfecdis.7b00036
- Philson SB, Llinas M. 1982. Siderochromes from Pseudomonas fluorescens. J. Biol. Chem. 257: 8081-8085.
- Cox CD, Adams P. 1985. Siderophore activity of pyoverdine for Pseudomonas aeruginosa. Infect. Immun. 48: 130-138.
- Ankenbauer RG, Toyokuni T, Staley A, Rinehatr Jr. KL, Cox CD. 1988. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J. Bacteriol. 170: 5344-5351. https://doi.org/10.1128/jb.170.11.5344-5351.1988
- Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, et al. 2012. Catecholate siderophore protect bacteria from pyochelin toxicity. PLoS One 7: e46754. https://doi.org/10.1371/journal.pone.0046754
- Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. 2006. Psedomonas otitidis sp. nov., isolated from patients with otic infections. Int. J. Syst. Evol. Microbiol. 56: 709-714. https://doi.org/10.1099/ijs.0.63753-0
- Sang MK, Shrestha A, Kim DY, Park KS, Pak CH, Kim KD. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29: 154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104
- Wegner DL, Mathis CR, Neblett TR. 1976. Direct method to determine the antibiotic susceptibility of rapid growing blood pathogens. Antimicrob. Agent. Chemother. 9: 861-862. https://doi.org/10.1128/AAC.9.5.861
- Leisinger T, Margraff R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43: 422-442.
- Miethke M, Marahiel MA. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413-451. https://doi.org/10.1128/MMBR.00012-07
- Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Reeves M, Pine L, Neilands JB, Bullows A. 1983. Absence of siderophore activity in Legionella sp. grown in iron deficient media. J. Bacteriol. 154: 324-329.
- Gillam A, Lewis AG, Anderson RJ. 1981. Quantitative determination of hydroxamic acid. Anal. Chem. 53: 841-844.
- Roosenberg JM, Lin YM, Lu Y, Miller MJ. 2000. Studies and syntheses of siderophore, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7: 159-197. https://doi.org/10.2174/0929867003375353
- Mollman U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D. 2009. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. Biometals 22: 615-624. https://doi.org/10.1007/s10534-009-9219-2
- Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E. 2009. Sideromycin: tools and antibiotics. Biometals 22: 3-13. https://doi.org/10.1007/s10534-008-9199-7
- Ji C, Miller PA, Miller MJ. 2012. Iron Transport-mediated drug delivery: Practical syntheses and in vitro antibacterial studies of tris-catecholates siderophore-aminopenicillin conjugates reveals selectively potent anti-pseudomonal activity. J. Am. Chem. Soc. 134: 9898-9901. https://doi.org/10.1021/ja303446w