DOI QR코드

DOI QR Code

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action

Pseudomonas otitidis PS 균주의 항생물질 생산과 작용 기작

  • 안경준 (서원대학교 생물교육과)
  • Received : 2017.12.11
  • Accepted : 2018.02.17
  • Published : 2018.03.28

Abstract

An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.

Gram 양성세균의 생육을 억제하는 세균을 청주시 무심천 토양에서 분리하였으며, 16S rRNA 유전자 염기서열 분석 결과 Pseudomonas otitidis PS로 동정하였다. PS 균주는 0.5%의 glucose가 포함된 1% soybean meal 배지에서 2차 대사 산물로서 최대 약 0.1%의 수율로 항생물질을 생산하였다. 항생물질 성분은 ethyl acetate로 추출하였으며, Staphylococcus aureus KCTC 1261에 대한 minimum inhibitory concentration은 $2{\mu}g/ml$이었다. 이 성분은 siderophore 활성을 띠어서 chrome azurol S 평판배지에서 주황색 halo를 나타내었으며, 철이 제거되면 생육 억제 효과는 감소하였다. Ascorbic acid 같은 환원제를 첨가하거나 혐기적 환경에서는 항생물질 활성을 잃으므로 PS 항생물질은 활성산소를 방출하여 bactericidal activity를 갖는 것으로 보인다.

Keywords

References

  1. Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrob. Agent. Chemother. 20: 814-820. https://doi.org/10.1128/AAC.20.6.814
  2. Linda ST, David MW, Robert FB, Leland SP. 1990. Production of the antibiotic phenazin-1- carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908-912.
  3. Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576. https://doi.org/10.1080/00021369.1964.10858275
  4. Howell CR, Stipanovic RD. 1980. Suppression of Pythium ultimum- induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotics, pyoluteorin. Phytopathology 70: 712-715. https://doi.org/10.1094/Phyto-70-712
  5. Cox CD, Rinehart Jr. KL, Moore ML, Cook Jr. JC. 1981. Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Pro. Natl. Acad. Sci. USA 78: 4256-4260. https://doi.org/10.1073/pnas.78.7.4256
  6. Shanahan P, O'Sullivan DJ, Simpson P, Glennon JD, O'Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358.
  7. Vandenbergh PA, Gonzales CF, Wright AM, Kunka BS. 1983. Ironchelating compounds produced by soil Pseudomonas: Correlation with fungal growth inhibition. Appl. Environ. Microbiol. 46: 128-132.
  8. Cornelis P, Matthijs S. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4: 787-798.
  9. Sheldon JR, Heinrichs DE. 2015. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol. Rev. 39: 592-630.
  10. Endicott NP, Lee E, Wencewicz TA. 2017. Structural basis for xenosiderophore utilization by the human pathogen Staphylococcus aureus. ACS Infect. Dis. 3: 542-553. https://doi.org/10.1021/acsinfecdis.7b00036
  11. Philson SB, Llinas M. 1982. Siderochromes from Pseudomonas fluorescens. J. Biol. Chem. 257: 8081-8085.
  12. Cox CD, Adams P. 1985. Siderophore activity of pyoverdine for Pseudomonas aeruginosa. Infect. Immun. 48: 130-138.
  13. Ankenbauer RG, Toyokuni T, Staley A, Rinehatr Jr. KL, Cox CD. 1988. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J. Bacteriol. 170: 5344-5351. https://doi.org/10.1128/jb.170.11.5344-5351.1988
  14. Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, et al. 2012. Catecholate siderophore protect bacteria from pyochelin toxicity. PLoS One 7: e46754. https://doi.org/10.1371/journal.pone.0046754
  15. Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. 2006. Psedomonas otitidis sp. nov., isolated from patients with otic infections. Int. J. Syst. Evol. Microbiol. 56: 709-714. https://doi.org/10.1099/ijs.0.63753-0
  16. Sang MK, Shrestha A, Kim DY, Park KS, Pak CH, Kim KD. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29: 154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104
  17. Wegner DL, Mathis CR, Neblett TR. 1976. Direct method to determine the antibiotic susceptibility of rapid growing blood pathogens. Antimicrob. Agent. Chemother. 9: 861-862. https://doi.org/10.1128/AAC.9.5.861
  18. Leisinger T, Margraff R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43: 422-442.
  19. Miethke M, Marahiel MA. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413-451. https://doi.org/10.1128/MMBR.00012-07
  20. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  21. Reeves M, Pine L, Neilands JB, Bullows A. 1983. Absence of siderophore activity in Legionella sp. grown in iron deficient media. J. Bacteriol. 154: 324-329.
  22. Gillam A, Lewis AG, Anderson RJ. 1981. Quantitative determination of hydroxamic acid. Anal. Chem. 53: 841-844.
  23. Roosenberg JM, Lin YM, Lu Y, Miller MJ. 2000. Studies and syntheses of siderophore, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7: 159-197. https://doi.org/10.2174/0929867003375353
  24. Mollman U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D. 2009. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. Biometals 22: 615-624. https://doi.org/10.1007/s10534-009-9219-2
  25. Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E. 2009. Sideromycin: tools and antibiotics. Biometals 22: 3-13. https://doi.org/10.1007/s10534-008-9199-7
  26. Ji C, Miller PA, Miller MJ. 2012. Iron Transport-mediated drug delivery: Practical syntheses and in vitro antibacterial studies of tris-catecholates siderophore-aminopenicillin conjugates reveals selectively potent anti-pseudomonal activity. J. Am. Chem. Soc. 134: 9898-9901. https://doi.org/10.1021/ja303446w