DOI QR코드

DOI QR Code

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum (Department of Life Sciences, Graduate School of Incheon National University) ;
  • Lee, Yeon-Ju (Department of Life Sciences, Graduate School of Incheon National University) ;
  • Wang, Tianshi (Department of Life Sciences, Graduate School of Incheon National University) ;
  • Kim, Jung-Wan (Department of Life Sciences, Graduate School of Incheon National University)
  • 투고 : 2018.01.08
  • 심사 : 2018.03.06
  • 발행 : 2018.03.28

초록

Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

키워드

참고문헌

  1. Tison DL, Kelly MT. 1986. Virulence of Vibrio vulnificus strains from marine environments. Appl. Environ. Microbiol. 51: 1004-1006.
  2. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, et al. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 2577-2587. https://doi.org/10.1101/gr.1295503
  3. Wallington J, Ning J, Titheradge MA. 2008. The control of hepatic glycogen metabolism in an in vitro model of sepsis. Mol. Cell. Biochem. 308: 183-192.
  4. Park SD, Shon HS, Joh NJ. 1991. Vibrio vulnificus septicemia in Korea: clinical and epidemiologic findings in seventy patients. J. Am. Acad. Dermatol. 24: 397-403. https://doi.org/10.1016/0190-9622(91)70059-B
  5. Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. 2007. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe. 2: 264-277.
  6. Jones MK, Oliver JD. 2009. Vibrio vulnificus: Disease and Pathogenesis. Infect. Immun. 77: 1723-1733. https://doi.org/10.1128/IAI.01046-08
  7. Nelson EJ, Harris JB, Morris JG, Calderwood Jr SB, Camilli A. 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nature 7: 693-702.
  8. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol. Microbiol. 72: 124-138. https://doi.org/10.1111/j.1365-2958.2009.06629.x
  9. Iglesias AA, Preiss J. 1992. Bacterial glycogen and plant starch biosynthesis. Biochem. Edu. 20: 196-203. https://doi.org/10.1016/0307-4412(92)90191-N
  10. Preiss J, Romeo T. 1989. Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Bacter. Physiol. 30: 184-238.
  11. Wang L, Wise MJ. 2011. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98: 719-729. https://doi.org/10.1007/s00114-011-0832-x
  12. Preiss J. 2009. Glycogen: biosynthesis and regulation. EcoSal Plus doi: 10.1128/ecosalplus.4.7.4.
  13. Montero M, Almagro G, Eydallin G, Viale AM, Munoz FJ, Bahaji A, et al. 2011. Escherichia coli glycogen genes are organized in a single glgBXCAP transcriptional unit possessing an alternative suboperonic promoter within glgC that directs glgAP expression. Biochem. J. 433: 107-117. https://doi.org/10.1042/BJ20101186
  14. Lombardo M, Michalski J, Martinez-Wilson H, Morin C, Hilton T, Osorio CG, et al. 2007. An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Pro. Nat. Acad. Sci. 104: 18229-18234. https://doi.org/10.1073/pnas.0705636104
  15. Park K. 2015. Roles of enzymes in glycogen metabolism and degradation in Escherichia coli. J. Appl. Glycosci. 62: 37-45.
  16. Pugsley AP, Dubreuil C. 1988. Molecular characterization of malQ, the structural gene for the Escherichia coli enzyme amylomaltase. Mol. Microbiol. 2: 473-479. https://doi.org/10.1111/j.1365-2958.1988.tb00053.x
  17. Lim MS, Lee MH, Lee JH, Ju H, Park NY, Jeong HS, et al. 2005. Identification and characterization of the Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625.
  18. Damotte M, Cattaneo J, Sigal N, Puig J. 1968. Mutants of Escherichia coli K12 altered in their ability to store glycogen, Biochem. Biophys. Res. Comm. 35: 916-920.
  19. Dauvillee D, Kinderf IS, Li Z, Kosar-Hashemi B, Samuel MS, Rampling L, et al. 2005. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187: 1465-1473. https://doi.org/10.1128/JB.187.4.1465-1473.2005
  20. Park J, Shim J, Tran PL, Hong I, Yong H, Oktavina EF, et al. 2011. Role of maltose enzymes in glycogen synthesis by Escherichia coli. J. Bacteriol. 193: 2517-2526. https://doi.org/10.1128/JB.01238-10
  21. Scott Jr. TA, Melvin EH. 1953. Determination of dextran with anthrone. Anal. Chem. 25: 1656-1661. https://doi.org/10.1021/ac60083a023
  22. Belanger AE, Hatfull GF. 1999. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181: 6670-6678.
  23. Paalman JW, Verwaal R, Slofstra SH, Verkleij AJ, Boonstra J, Verrips CT. 2003. Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae. FEMS Yeast Res. 3: 261-268.
  24. Holme T, Palmstierna H. 1956. Changes in glycogen and nitrogen- containing compounds in Escherichia coli B during growth in deficient media. I. Nitrogen and carbon starvation. Acta Chem. Scand. 10: 578-586. https://doi.org/10.3891/acta.chem.scand.10-0578
  25. Preiss J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38: 419-458. https://doi.org/10.1146/annurev.mi.38.100184.002223
  26. Shim J, Park J, Hong J, Kim KW, Kim M, Auh J, et al. 2009. Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J. Bacteriol. 191: 4835- 4844. https://doi.org/10.1128/JB.00176-09
  27. Lang H, Jonson G, Holmgren J, Palva ET. 1994. The maltose regulon of Vibrio cholerae affects production and secretion of virulence factors. Infect. Immun. 62: 4781-4788.
  28. Palmer TN, Wober G, Whelan WJ. 1973. The pathway of exogenous and endogenous carbohydrate utilization in Escherichia coli: a dual function for the enzymes of the maltose operon. Eur. J. Biochem. 39: 601-612. https://doi.org/10.1111/j.1432-1033.1973.tb03159.x
  29. Slock JA, Stahly DP. 1974. Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J. Bacteriol. 12: 399-406.
  30. Zevenhuizen LP, Ebbink AG. 1974. Interrelations between glycogen, poly-beta-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas. Antonie Van Leeuwenhoek 40: 103-120. https://doi.org/10.1007/BF00394558
  31. Strange RE. 1968. Bacterial glycogen and survival. Nature 220: 606-607. https://doi.org/10.1038/220606a0
  32. Boylen CW, Mulks MH. 1978. Survival of Coryneform bacteria during periods of prolonged nutrient starvation. J. Gen. Microbiol. 105: 323-354.
  33. Jo H, Park S, Jeong H, Kim J, Park J. 2015. Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determined the chain length transferred. FEBS Lett. 589: 1089-1094. https://doi.org/10.1016/j.febslet.2015.03.011
  34. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP, et al. 2008. Glycogen and maltose utilization by Escherichia coli O157: H7 in the mouse intestine. Infect. Immun. 76: 2531-2540.