References
- M. A. Nowak and R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford Uni., Springer Verlag, Oxford, 2000.
- A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. https://doi.org/10.1137/S0036144598335107
- D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29-64. https://doi.org/10.1006/bulm.2001.0266
- V. Herz, S. Bonhoeffer, R. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251. https://doi.org/10.1073/pnas.93.14.7247
- J. Wang, J. Lang and F. Li, Constructing Lyapunov functionals for a delayed viral infection model with multitarget cells, J. NonlinearSci. Appl., 9 (2) (2016), 524-536. https://doi.org/10.22436/jnsa.009.02.18
- N. M. Dixit and A.S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay, J. Theoret. Biol., 226 (2004), 95-109. https://doi.org/10.1016/j.jtbi.2003.09.002
- C. Connell McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78. https://doi.org/10.1016/j.nonrwa.2015.03.002
- Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays, Math. Biosc. Eng., 10 (2) (2013), 483-498. https://doi.org/10.3934/mbe.2013.10.483
- S. Liu and L.Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. Biosc. Eng., 7(3) (2010), 675-685. https://doi.org/10.3934/mbe.2010.7.675
- A. M. Elaiw and N. H. AlShameani, Global analysis for a delay-distributed viral infection model with antibodies and general nonlinear incidence rate, J. Korean Soc. Ind. Appl. Math., 18(4) (2014), 317-335.
- A. M. Elaiw, Global threshold dynamics in humoral immunity viral infection models including an eclipse stage of infected cells, J. Korean Soc. Ind. Appl. Math., 19:2 (2015), 137-170.
- A. M. Elaiw, I. A. Hassanien and S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49(4) (2012), 779-794. https://doi.org/10.4134/JKMS.2012.49.4.779
- A.M. Elaiw and S.A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383-394. https://doi.org/10.1002/mma.2596
- A.M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. RealWorld Appl., 11 (2010), 2253-2263. https://doi.org/10.1016/j.nonrwa.2009.07.001
- A. M. Elaiw and N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in co-circulating target cells, Appl. Math. Comput., 265 (2015), 1067-1089.
- A. M. Elaiw and X. Xia, HIV dynamics: Analysis and robust multirate MPC-based treatment schedules, J. Math. Anal. Appl., 356 (2009), 285-301.
- B. Buonomo and C. Vargas-De-Le, Global stability for an HIV-1 infection model in cluding an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709-720. https://doi.org/10.1016/j.jmaa.2011.07.006
- A. M. Elaiw, R. M. Abukwaik and E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., 77(5) (2014), 25 Pages.
- B. Li, Y. Chen, X. Lu and S. Liu, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13 (2016), 135-157.
- C. Monica and M. Pitchaimani, Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays, Nonlinear Anal. Real World Appl., 27 (2016), 55-69. https://doi.org/10.1016/j.nonrwa.2015.07.014
- C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 121-127. https://doi.org/10.1016/j.cnsns.2013.06.025
- R. Xu, Global stability of an HIV-1 infection model with saturation infection and in tracellular delay, J.Math. Anal. Appl., 375 (2011), 75-81. https://doi.org/10.1016/j.jmaa.2010.08.055
- J. A. Deans and S. Cohen, Immunology of malaria, Ann. Rev. Microbiol, 37 (1983), 25-49. https://doi.org/10.1146/annurev.mi.37.100183.000325
- T. Wang, Z. Hu and F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Anal. Appl., 411 (2014), 63-74. https://doi.org/10.1016/j.jmaa.2013.09.035
- A. M. Elaiw and A. Alhejelan, Global dynamics of virus infection model with humoral immune response and distributed delays, J. Comput. Anal. Appl.,17 (2014), 515-523.
- A.M. Elaiw and N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, Int. J. of Dynam. Control, (2015), DOI: 10.1007/s40435-015-0200-3.
- A.M. Elaiw and N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, Int. J. of Dynam. Control, (2015), DOI: 10.1007/s40435-015-0181-2.
- A. M. Elaiw and N. H. AlShameani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161-190. https://doi.org/10.1016/j.nonrwa.2015.05.007
- T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comput. Simulation, 89 (2013), 13-22. https://doi.org/10.1016/j.matcom.2013.03.004
- A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary and M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, Int. J. of Dynam. Control, (2016), DOI 10.1007/s40435-016-0235-0.
- R. Larson and B. H. Edwards, Calculus of a single variable, Cengage Learning, Inc., USA, 2010.
- J. K. Hale and S. M. V. Lunel, Introduction to functional differential equations, Springer Science & Business Media 99, 2013.
- X. Yang, L. Chen, and J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Computers & Mathematics with Applications, 32 (4) (1996), 109-116. https://doi.org/10.1016/0898-1221(96)00129-0