DOI QR코드

DOI QR Code

A Study on Definition and Measurement of Customer Utility based on Attributes of Multiple Generation Technology: Case of 45nm and 32nm Logic Semiconductor

다세대 기술의 속성 기반 고객효용도(Customer utility) 정의 및 측정에 대한 연구: 45nm 및 32nm 로직 반도체 기술 사례

  • Park, Changhyun (Office of R&D Budget and Feasibility Analysis, KISTEP(Korea Institute of S&T Evaluation and Planning))
  • 박창현 (한국과학기술기획평가원 재정투자분석본부)
  • Received : 2017.11.22
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

The concept of customer utility, which affects customer's adoption, is important to understand the process of technology diffusion and substitution regarding multiple generation technology. This research defined the concept of attribute-based customer utility and developed a model for measuring attribute-based customer utility. Based on the literature review and modeling, we provided the definition and a model regarding customer utility and the accuracy of the model is verified through a case study of the semiconductor industry. Customer utility for a multiple generation technology needs to consider changes by generation, or time within the same generation, and is defined as the summation of both technological and economic utilities. In addition, we can model the measurement of customer utility after converting technological and economical attributes into utilities. This research is valuable in understanding not only customer utility as a driver of customer adoption, but also for establishing technological strategy after forecasting diffusion and substitution paths based on customer utility.

고객의 기술 채택에 영향을 미치는 고객효용도의 개념에 대한 이해는 다세대 기술의 확산 및 대체 과정을 이해하는데 중요하다. 본 연구에서는 다세대 기술의 속성 기반 고객효용도의 개념에 대해 정의하고, 고객효용도를 측정할 수 있는 모형을 개발하였다. 문헌리뷰 및 모형화를 바탕으로 다세대 기술의 속성 기반 고객효용도에 대해 정의 및 측정 모형을 제시하였고, 도출한 모형의 정합성을 반도체 산업 사례를 바탕으로 검증하였다. 다세대 기술에서 속성 기반 고객효용도는 세대별로 또는 같은 세대 내에서 시간별 변화를 고려해야하고, 기술적 속성과 경제적 속성에 대해 가중치를 고려한 모든 효용도들의 합으로 정의된다. 또한 속성 기반 고객효용도는 효용도 변환표를 통해 속성들의 값을 효용도로 전환한 후 가중치를 고려한 모든 속성들의 효용도의 합으로 모형화 가능하다. 본 연구를 통해 다세대 기술이 확산 및 대체되는 과정에서 고객의 기술 채택의 근본 동인으로서 영향을 미치는 고객효용도에 대해 이해 가능하고, 고객효용도를 바탕으로 확산 및 대체 경로를 예측하여 기술전략을 수립하는데 유용할 것이다.

Keywords

References

  1. Y. T. Park, Management of Technological Knowledge for Next Generation Innovation, Life and Power Press, 2007.
  2. R. N. Foster, Innovation: The attacker's advantage, Summit Books, 1986. DOI: https://doi.org/10.1007/978-3-322-83742-4
  3. C. H. Park, "Definition and measurement of S-curve based technological discontinuity : case of technological substitution of logic semiconductors", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 7, pp. 102-108, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.7.102
  4. J. C. Fisher and R. H. Pry, "A simple substitution model of technological change", Technological Forecasting and Social Change, vol. 3, pp. 75-88, 1997. DOI: https://doi.org/10.1016/S0040-1625(71)80005-7
  5. J. A. Norton and F. M. Bass, "A Diffusion Theory Model of Adoption and Substitution For Successive Generations of High-Technology Products", Management Science, vol. 33, no. 9, pp. 1069-1086, 1987. DOI: https://doi.org/10.1287/mnsc.33.9.1069
  6. V. Mahajan and E. Muller, "Timing, Diffusion, and Substitution of Successive Generations of Technological Innovations: The IBM Mainframe Case", Technological Forecasting and Social Change, vol. 51, pp. 109-132, 1996. DOI: https://doi.org/10.1016/0040-1625(95)00225-1
  7. D. B. Jun and Y. S. Park, "A choice-based diffusion model for multiple generations of products", Technological Forecasting and Social Change, vol. 61, pp. 45-58, 1999. DOI: https://doi.org/10.1016/S0040-1625(98)00049-3
  8. J. M. Lattin and J. H. Roberts, "The application of an individual level diffusion model prior to launch", Stanford University GSB Research Paper, no. 1663, pp. 1-32, 2000.
  9. S. H. Kim and V. S. Srinivasan, "A Multiattribute Model of the Timing of Buyer's Upgrading to Improved Versions of High Technology Products", Stanford University GSB Research Paper, no. 1720(R), pp. 1-36, 2003.
  10. D. B. Jun et al., "Forecasting telecommunication service subscribers in substitutive and competitive environments", International Journal of Forecasting, vol. 18, pp. 561-581, 2002. DOI: https://doi.org/10.1016/S0169-2070(02)00067-5
  11. V. B. Kreng and H. T. Wang, "A technology replacement model with variable market potential - An empirical study of CRT and LCD TV", Technological Forecasting and Social Change, vol. 76, no. 7, pp. 942-951, 2009. DOI: https://doi.org/10.1016/j.techfore.2009.02.001
  12. A. Marshall, Principles of Economics. An introductory volume (8th ed.), London: Macmillan, 1920.
  13. E. Ehrnberg, "On the definition and measurement of technological discontinuities", Technovation, vol. 15, no. 7, pp. 437-452, 1995. DOI: https://doi.org/10.1016/0166-4972(95)96593-I
  14. K. M. Eisenhardt, "Building theories from case study research", Academy of Management Review, vol. 14, no. 4, pp. 532-550, 1989. DOI: https://doi.org/10.5465/AMR.1989.4308385
  15. R. K. Yin, Case Study Research: Design and Methods, Sage publications, Inc., 2009.
  16. N. Siggelkow, "Persuasion with case studies", The Academy of Management Journal Archive, vol. 50, no. 1, pp. 20-24, 2007. DOI: https://doi.org/10.5465/AMJ.2007.24160882
  17. S. T. Hwang & H. S. Oh, "A Study on The Diffusion Factors and Policies of Advanced Manufacturing Technology", IE interfaces, vol. 12, no. 3, pp. 382-389, 1999.
  18. C. H. Park, "A study on technology diffusion trend considering technological performance enhancement and economics : case of technology evolution of 32nm, 22nm, 14nm logic semiconductors", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 2, pp. 177-184, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.2.177
  19. S. H. Park, "A Study on Diffusion Models Capturing Technological Substitution", Asia Marketing Journal, vol. 3, no. 3, pp. 46-70, 2001.
  20. ITRS, International Technology Roadmap for Semiconductors [Internet], Available From: http://www.itrs2.net/, (accessed Nov., 14, 2017)
  21. Intel Corporation [Internet], Available From: https://www.intel.com/, (accessed Nov., 14, 2017)
  22. IC Knowledge, Semiconductor Wafer Cost Information [Internet], Available From: http://www.icknowledge.com/, (accessed Nov., 14, 2017)