DOI QR코드

DOI QR Code

Structural Studies of Respirasome by Cryo-Electron Microscopy

  • Jeon, Tae Jin (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Kim, Ho Min (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ryu, Seong Eon (Department of Bioengineering, College of Engineering, Hanyang University)
  • Received : 2018.10.25
  • Accepted : 2018.11.22
  • Published : 2018.12.30

Abstract

The respiratory chain complex forms a supercomplex (SC) in the inner mitochondrial membrane. This complex facilitates the process of electron transfer to produce the proton gradient used to synthesize ATP. Understanding the precise structure of the SC is considered an important challenge. However, it has not yet been reported. The development of a Cryo-electron microscopy (EM) technique provides an effective way to obtain high-resolution micrographs to determine the high-resolution three-dimensional structure of biomolecules. In this brief review, the currently reported Cryo-EM structures of the mammalian respirasome have been described in order to establish a direction for further research in the respiratory system.

Keywords

References

  1. Agip A A, Blaza J N, Bridges H R, Viscomi C, Rawson S, Muench S P, and Hirst J (2018) Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25, 548-556. https://doi.org/10.1038/s41594-018-0073-1
  2. Ai Q, Jing Y, Jiang R, Lin L, Dai J, Che Q, Zhou D, Jia M, Wan J, and Zhang L (2014) Rotenone, a mitochondrial respiratory complex I inhibitor, ameliorates lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Int. Immunopharmacol. 21, 200-207. https://doi.org/10.1016/j.intimp.2014.04.028
  3. Alam M and Schmidt W J (2004) Mitochondrial complex I inhibition depletes plasma testosterone in the rotenone model of Parkinson's disease. Physiol. Behav. 83, 395-400. https://doi.org/10.1016/j.physbeh.2004.08.010
  4. Althoff T, Mills D J, Popot J L, and Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex $I_1III_2IV_1$. EMBO J. 30, 4652-4664. https://doi.org/10.1038/emboj.2011.324
  5. Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, Kaiser S, Nubel E, Brutschy B, Radermacher M, Brandt T, and Zickermann V (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem. J. 437, 279-288. https://doi.org/10.1042/BJ20110359
  6. Baradaran R, Berrisford J M, Minhas G S, and Sazanov L A (2013) Crystal structure of the entire respiratory complex I. Nature 494, 443-448. https://doi.org/10.1038/nature11871
  7. Bianchi C, Fato R, Genova M L, Castelli G P, and Lenaz G (2003) Structural and functional organization of Complex I in the mitochondrial respiratory chain. BioFactors 18, 3-9. https://doi.org/10.1002/biof.5520180202
  8. Bianchi C, Genova M L, Castelli G P, and Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly - Kinetic evidence using flux control analysis. J. Biol. Chem. 279, 36562-36569. https://doi.org/10.1074/jbc.M405135200
  9. Blaza J N, Serreli R, Jones A J, Mohammed K, and Hirst J (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc. Natl. Acad. Sci. USA 111, 15735-15740. https://doi.org/10.1073/pnas.1413855111
  10. Blaza J N, Vinothkumar K R, and Hirst J (2018) Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312-319. https://doi.org/10.1016/j.str.2017.12.014
  11. Bonora M, Patergnani S, Rimessi A, De M E, Suski J M, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski M R, and Pinton P (2012) ATP synthesis and storage. Purinergic Signal 8, 343-357. https://doi.org/10.1007/s11302-012-9305-8
  12. Carroll J, Fearnley I M, Shannon R J, Hirst J, and Walker J E (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol. Cell. Proteomics 2, 117-126. https://doi.org/10.1074/mcp.M300014-MCP200
  13. Carroll J, Fearnley I M, Skehel J M, Shannon R J, Hirst J, and Walker J E (2006) Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 281, 32724-32727. https://doi.org/10.1074/jbc.M607135200
  14. Chouchani E T, Methner C, Nadtochiy S M, Logan A, Pell V R, Ding S, James A M, Cocheme H M, Reinhold J, Lilley K S, Partridge L, Fearnley I M, Robinson A J, Hartley R C, Smith R A, Krieg T, Brookes P S, and Murphy M P (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753-759. https://doi.org/10.1038/nm.3212
  15. Chung J H and Kim H M (2017) The nobel prize in chemistry 2017: highresolution cryo-electron microscopy. Appl. Microsc. 47, 218-222. https://doi.org/10.9729/AM.2017.47.4.218
  16. Chung J M and Jung H S (2018) Cryo-electron tomography: a tool for in situ structural analysis of macromolecular complexes. Appl. Spectrosc. Rev. 53, 195-202. https://doi.org/10.1080/05704928.2017.1328426
  17. Darrouzet E, Issartel J P, Lunardi J, and Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett. 431, 34-38. https://doi.org/10.1016/S0014-5793(98)00719-4
  18. Dudkina N V, Kudryashev M, Stahlberg H, and Boekema E J (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc. Natl. Acad. Sci. USA 108, 15196-15200. https://doi.org/10.1073/pnas.1107819108
  19. Dudkina N V, Sunderhaus S, Boekema E J, and Braun H P (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J. Bioenerg. Biomembr. 40, 419-424. https://doi.org/10.1007/s10863-008-9167-5
  20. Efremov R G, Baradaran R, and Sazanov L A (2010) The architecture of respiratory complex I. Nature 465, 441-445. https://doi.org/10.1038/nature09066
  21. Enriquez J A (2016) Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 78, 533-561. https://doi.org/10.1146/annurev-physiol-021115-105031
  22. Fiedorczuk K, Letts J A, Degliesposti G, Kaszuba K, Skehel M, and Sazanov L A (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410. https://doi.org/10.1038/nature19794
  23. Fowler L R, and Richardson S H (1963) Studies on the electron transfer system. J. Biol. Chem. 238, 456-463.
  24. Gao X, Wen X, Esser L, Quinn B, Yu L, Yu C A, and Xia D (2003) Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42, 9067-9080. https://doi.org/10.1021/bi0341814
  25. Grgic L, Zwicker K, Kashani-Poor N, Kerscher S, and Brandt U (2004) Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J. Biol. Chem. 279, 21193-21199. https://doi.org/10.1074/jbc.M313180200
  26. Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, and Yang M (2016) The architecture of the mammalian respirasome. Nature 537, 639-643. https://doi.org/10.1038/nature19359
  27. Guo R, Zong S, Wu M, Gu J, and Yang M (2017) Architecture of human mitochondrial respiratory megacomplex $I_2III_2IV_2$. Cell 170, 1247-1257. https://doi.org/10.1016/j.cell.2017.07.050
  28. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015-1069. https://doi.org/10.1146/annurev.bi.54.070185.005055
  29. Hirst J, Carroll J, Fearnley I M, Shannon R J, and Walker J E (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604, 135-150. https://doi.org/10.1016/S0005-2728(03)00059-8
  30. Iwata S, Lee J W, Okada K, Lee J K, Iwata M, Rasmussen B, Link T A, Ramaswamy S, and Jap B K (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64-71. https://doi.org/10.1126/science.281.5373.64
  31. Jonckheere A I, Smeitink J A M, and Rodenburg R J T (2012) Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225. https://doi.org/10.1007/s10545-011-9382-9
  32. Kashani-Poor N, Zwicker K, Kerscher S, and Brandt U (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J. Biol. Chem. 276, 24082-24087. https://doi.org/10.1074/jbc.M102296200
  33. Letts J A, Fiedorczuk K, and Sazanov L A (2016) The architecture of respiratory supercomplexes. Nature 537, 644-648. https://doi.org/10.1038/nature19774
  34. Letts J A and Sazanov L A (2017) Clarifying the supercomplex: the higherorder organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800-808. https://doi.org/10.1038/nsmb.3460
  35. Lopez-Fabuel I, Le Douce J, Logan A, James A M, Bonvento G, Murphy M P, Almeida A, and Bolanos J P (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. USA 113, 13063-13068. https://doi.org/10.1073/pnas.1613701113
  36. Maranzana E, Barbero G, Falasca A I, Lenaz G, and Genova M L (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal. 19, 1469-1480. https://doi.org/10.1089/ars.2012.4845
  37. Mitchell P (1975a) The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137-139. https://doi.org/10.1016/0014-5793(75)80359-0
  38. Mitchell P (1975b) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56, 1-6. https://doi.org/10.1016/0014-5793(75)80098-6
  39. Parey K, Brandt U, Xie H, Mills D J, Siegmund K, Vonck J, Kuhlbrandt W, and Zickermann V (2018) Cryo-EM structure of respiratory complex I at work. eLife 7, e39213. https://doi.org/10.7554/eLife.39213
  40. Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C, and Ferrin T E (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  41. Pietras R, Sarewicz M, and Osyczka A (2016) Distinct properties of semiquinone species detected at the ubiquinol oxidation Q(o) site of cytochrome bc(1) and their mechanistic implications. J. R. Soc. Interface 13, 20160133.
  42. Sarewicz M and Osyczka A (2015) Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219-243. https://doi.org/10.1152/physrev.00006.2014
  43. Sazanov L A (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375-388.
  44. Sousa J S, Mills D J, Vonck J, and Kuhlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. eLife 5, e21290. https://doi.org/10.7554/eLife.21290
  45. Tocilescu M A, Fendel U, Zwicker K, Kerscher S, and Brandt U (2007) Exploring the ubiquinone binding cavity of respiratory complex I. J. Biol. Chem. 282, 29514-29520. https://doi.org/10.1074/jbc.M704519200
  46. Tocilescu M A, Zickermann V, Zwicker K, and Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim. Biophys. Acta 1797, 1883-1890. https://doi.org/10.1016/j.bbabio.2010.05.009
  47. Vinothkumar K R, Zhu J, and Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515, 80-84. https://doi.org/10.1038/nature13686
  48. Walker J E (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25, 253-324. https://doi.org/10.1017/S003358350000425X
  49. Wallace D C (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685-698. https://doi.org/10.1038/nrc3365
  50. Watabe M and Nakaki T (2008) Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol. Pharmacol. 74, 933-940. https://doi.org/10.1124/mol.108.048546
  51. Wirth C, Brandt U, Hunte C, and Zickermann V (2016) Structure and function of mitochondrial complex I. Biochim. Biophys. Acta 1857, 902-914. https://doi.org/10.1016/j.bbabio.2016.02.013
  52. Wu M, Gu J, Guo R, Huang Y, and Yang M (2016) Structure of mammalian respiratory supercomplex $I_1III_2IV_1$. Cell 167, 1598-1609. https://doi.org/10.1016/j.cell.2016.11.012
  53. Zhu J, Vinothkumar K R, and Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536, 354-358. https://doi.org/10.1038/nature19095
  54. Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, and Brandt U (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44-49. https://doi.org/10.1126/science.1259859