DOI QR코드

DOI QR Code

교통온실가스 감축정책의 효과분석 방법론 연구

A Methodology for Evaluating the Effects of Transportation Policies Related to Greenhouse Gas Reduction

  • 이규진 (한국지능형교통체계협회 기술표준센터) ;
  • 이용주 (아주대학교 TOD기반 지속가능 도시교통연구센터) ;
  • 최기주 (아주대학교 교통시스템공학과)
  • LEE, Kyu Jin (Center for Technology & Standardization, ITS Korea) ;
  • YI, Yongju (TOD-based Sustainable City Transportation Research Center, Ajou University) ;
  • CHOI, Keechoo (Department of Transportation Systems Engineering, Ajou University)
  • 투고 : 2017.04.17
  • 심사 : 2017.12.20
  • 발행 : 2018.02.28

초록

본 연구는 교통온실가스 감축목표 설정 및 효과적 이행계획 수립에 기여하기 위한 교통온실가스 감축정책의 정량적 효과분석 방법론 정립을 목적으로 한다. 본 연구는 실제 교통 배출 자료에 근거한 교통수단별 온실가스 배출 원단위 추정모형을 포함하여, 수단효용함수와 수요추정모형 등을 활용하고 있다. 연구결과, 전기차 등 온실가스 감축정책 효과는 지역과 대상차종 등에 따라 다양하게 도출될 수 있으며, 저예산 정책인 에코드라이브 활성화 정책은 높은 온실가스 감축효과를 기대할 수 있는 것으로 확인되었다. 또한 자동차 배출개선 정책 뿐 아니라 대중교통 이용활성화 정책도 높은 온실가스 감축효과를 기대할 수 있으며, 본 연구는 이러한 사실을 정량적으로 확인하고 있다. 본 연구결과는 신기후체제 대응을 위한 국가 및 지자체의 온실가스 감축정책 평가에 유용하게 활용될 수 있을 것으로 기대된다.

The purpose of this study is to establish a methodology for evaluating quantitative effects of transportation GHG (greenhouse gas) reduction-related policies that were implemented based on the reduction goals of transportation GHG and effective implementation plans. This study uses a modal utility function and demand estimation models as well as a GHG emission basic unit estimation model by each transportation mode based on actual traffic and emission data. The results showed that the effects of GHG reduction policies such as electric vary from region to region, and from vehicle to vehicle. It is also confirmed that an eco-drive promotion policy, one of the lowest budget policies, is expected to contribute to high reduction in GHG. In addition, not only automobile emission improvement policies but also the promotion policies of public transportation are expected to highly reduce GHG as confirmed quantitatively in this study. The results of this study are expected to be useful for national and local governments' evaluation of GHG reduction policies to cope with the post 2020.

키워드

참고문헌

  1. Go G. H. (2012), Method of Calculation Regional Road Transport Greenhouse Gas Emissions Inventory, Using KTDB, Dongeui University, M. A.
  2. Han S. J. (2013), Feasibility of Greenhouse Gas Reduction Target in Transport Sector, J. Transp. Res., 20(1), 67-77.
  3. Han S. J., Park K. Y., Park S. J. (2013), Estimation of Greenhouse Gas Emissions From Transport Sector in New Town Development, Env. Policy Res., 12(4), 45-69. https://doi.org/10.17330/joep.12.4.201312.45
  4. IEA (2013), IEA $CO_2$ Emissions From Fuel Combustion Database.
  5. Jo N. G. (2010), GHG Reduction Strategy for Land Transportation, The Korea Spatial Planning Rev., 399, 32-43.
  6. Jung D. Y., Yoon J. H., Park S. W., Kim J. Y. (2011), The Strategies of Transport Demand Management to Decrease the Greenhouse Gases in Transportation Part, J. Korean Soc. Transp., 29(1), 29-38.
  7. Kim M Y., Yoon Y J., Han J., Lee H S., Jeon U. C. (2016), Analysis of GHG Reduction Potential on Road Transportation Sector Using the LEAP Model: Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior, J. Climate Change Res., 7(1), 85-93.
  8. Kim T. H., Lee S. I., Kim Y. I., Rho J. H. (2010), Improvement Study for Generated Greenhouse Gas(GHG) Amount Estimation From Transportation, J. Korean Soc. Transp., 7(5), 69-79.
  9. Kim Y. J., Park J. H., Oh Y. H. (2016), Comparative Analysis on the Rail and Road Freight Transportation: Air Contaminant and Greenhouse Gas Emission, J. Korea Acad.-Ind. cooperation Soc., 17(9), 94-101. https://doi.org/10.5762/KAIS.2016.17.9.94
  10. Lee H. J. (2010), Basic Study on Development of Road Transport Emission Calculation System(ROTECS), J. Korean Soc. Transp., 7(5), 81-89.
  11. Lee J. J. (2015), A Study of the Subway Utilization Awareness for Greenhouse Gas Reduction in Road Traffic Sector, Chung-Ang University, M. A.
  12. Lee K. J., Choi K. C. (2016), Analysis on the Correction Factor of Emission Factors and Verification for Fuel Consumption Differences by Road Types and Time Using Real Driving Data, J. Korean Soc. Transp., 33(5), 449-460. https://doi.org/10.7470/jkst.2015.33.5.449
  13. Lee K. J., Jang J. A., Choi K. C., Shim S. W. (2014), Economic Effects Analysis for Passenger Car's Idle Stop and Go Strategy: Focusing on Seoul Metropolitan Area, J. Korean Soc. Transp., 32(5), 421-430. https://doi.org/10.7470/jkst.2014.32.5.421
  14. Lee K. J., Kim G. W., Choi K. C. (2011), Development of Regression-based Bike Direct Demand Models, J. Korean Soc. Civ. Eng., 31(4), 489-496.
  15. Lee K. J., Park K. H., Shim S. W., Choi K. C. (2015), Evaluation of Mobile Emissions Reduction Strategies Using Travel Demand Model and Analytic Hierarchy Process, J. Korean Soc. Civ. Eng., 35(5), 1123-1133. https://doi.org/10.12652/Ksce.2015.35.5.1123
  16. Metropolitan Transportation Authority (2016), Passenger O/D Actualizing Project for Seoul Metropolitan Area on the Year of 2015.
  17. Ministry of Environment (2015), Korean Auto-oil Project (Analysis of the Life Cycle of Automobile GHG
  18. Park J. Y., Min Y. J., Jung T. Y. (2013), Development of KTDB Based Korean Greenhouse Gas Estimation Model in Transportation and Logistics, J. Transp. Res., 20(2), 29-43.
  19. Park K. H. (2013), Efficiency Analysis of Greenhouse Gas and Air Pollutants Reduction Measures Using DEA and Travel Demand Models, Ajou University, M. A.
  20. Tiwari G., Jain D., Rao K. R. (2016), Impact of Public Transport and Non-motorized Transport Infrastructure on Travel Mode Shares, Energy, Emissions and Safety: Case of Indian Cities, Transportation Research Part D, Transp. and Env., 44, 277-291. https://doi.org/10.1016/j.trd.2015.11.004
  21. Wu S. K. (2013), GHG Emission Reduction Effect Analysis of Bus Transfer Service at Expressway Rest Areas Considering User Characteristics, J. Transp. Res., 20(4), 41-54.
  22. Wu S. K. (2014), Public Bicycle User Characteristics and GHG Emission Reduction Effect, J. Korean Soc. Civ. Eng., 707-708.