DOI QR코드

DOI QR Code

Development and Testing of a 10 kV 1.5 kA Mobile DC De-Icer based on Modular Multilevel Converter with STATCOM Function

  • Hu, Pengfei (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China) ;
  • Liang, Yiqiao (Zhejiang Guirong Xieping Technology Co., Ltd.) ;
  • Du, Yi (Power Economic Research Institute of State Grid Fujian Electric Power Company) ;
  • Bi, Renming (Zhejiang Guirong Xieping Technology Co., Ltd.) ;
  • Rao, Chonglin (Zhejiang Guirong Xieping Technology Co., Ltd.) ;
  • Han, Yang (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China)
  • Received : 2017.05.25
  • Accepted : 2017.11.18
  • Published : 2018.03.20

Abstract

This paper introduces the development of a de-icer based on a full-bridge modular multilevel converter (FMMC). The FMMC can generate a wide range of DC voltages owing to its modularity, scalability, and redundancy, which makes it suitable for ice-melting applications. First, operating principles and voltage ranges are analyzed when FMMC is applied as a mobile de-icer. Second, two new startup strategies, constant modulation index and constant power startup strategies, are proposed. Third, the main control strategies of the de-icer are proposed. Fourth, a novel rated-current zero-power test scheme is proposed to simplify test conditions. Finally, a 10 kV 1.5 kA mobile MMC de-icer is designed and built, and experiments are carried out to validate the proposed startup, control strategies, and rated-current zero-power test scheme.

Keywords

E1PWAX_2018_v18n2_456_f0001.png 이미지

Fig. 1. Circuit topology of the mobile DC de-icer based on MMC.

E1PWAX_2018_v18n2_456_f0002.png 이미지

Fig. 2. Equivalent circuit of the MMC de-icer: (a) AC loop, (b)DC loop.

E1PWAX_2018_v18n2_456_f0003.png 이미지

Fig. 3. Operating range of DC voltage modulation indexes of theFMMC and HMMCs.

E1PWAX_2018_v18n2_456_f0004.png 이미지

Fig. 4. Startup process of the proposed startup strategies.

E1PWAX_2018_v18n2_456_f0005.png 이미지

Fig. 5. Single-phase equivalent circuit and vector diagram.

E1PWAX_2018_v18n2_456_f0006.png 이미지

Fig. 6. Constant modulation index charging strategy.

E1PWAX_2018_v18n2_456_f0007.png 이미지

Fig. 7. Constant power charging strategy.

E1PWAX_2018_v18n2_456_f0008.png 이미지

Fig. 8. Average voltage of all SMs and reactive power control.

E1PWAX_2018_v18n2_456_f0009.png 이미지

Fig. 9. De-icing current and phase average voltage control.

E1PWAX_2018_v18n2_456_f0010.png 이미지

Fig. 10. Individual SM voltage control.

E1PWAX_2018_v18n2_456_f0011.png 이미지

Fig. 11. PSC-PWM modulation block diagram.

E1PWAX_2018_v18n2_456_f0012.png 이미지

Fig. 12. Photographs of the 10 kV 1.5 kA mobile MMC de-icer.(a) Appearance of the whole system. (b) A section of the SMbank. (c) Single power module.

E1PWAX_2018_v18n2_456_f0013.png 이미지

Fig. 13. Electrical diagram of zero-power experiment scheme.

E1PWAX_2018_v18n2_456_f0014.png 이미지

Fig. 14. SM average voltages during the startup procedure.

E1PWAX_2018_v18n2_456_f0015.png 이미지

Fig. 15. Arm currents during the startup process.

E1PWAX_2018_v18n2_456_f0016.png 이미지

Fig. 16. Line-to-line voltages of the utility grid.

E1PWAX_2018_v18n2_456_f0017.png 이미지

Fig. 17. Dc, AC, and arm currents on rated ice-melting currentzero-power condition.

E1PWAX_2018_v18n2_456_f0018.png 이미지

Fig. 18. SM average voltages of six arms on rated ice-meltingcurrent zero-power condition.

E1PWAX_2018_v18n2_456_f0019.png 이미지

Fig. 19. SM average voltages of six arms on rated ice-meltingcurrent zero-power condition.

E1PWAX_2018_v18n2_456_f0020.png 이미지

Fig. 20. SM average voltages of six arms on rated STATCOMcondition.

E1PWAX_2018_v18n2_456_f0021.png 이미지

Fig. 21. Currents and SM average voltage of phase-a on thede-icing transient condition.

TABLE I MAIN-CIRCUIT PARAMETERS OF 10 KV 1.5 KA MMC DE-ICER

E1PWAX_2018_v18n2_456_t0001.png 이미지

TABLE II MAIN-CIRCUIT PARAMETERS FOR THE MMC DE-ICER

E1PWAX_2018_v18n2_456_t0002.png 이미지

References

  1. C. Horwill, C. C. Davidson, and M. Granger, "An application of HVDC to the de-icing of Transmission Lines," 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, pp. 529-534, 2006.
  2. J. Wang, C. Fu, Y. Chen, H. Rao, S. Xu, T. Yu, and L. Li, "Research and application of DC de-icing technology in china southern power grid," IEEE Trans. Power Del., Vol. 27, No. 3, pp. 1234-1242, Jul. 2012. https://doi.org/10.1109/TPWRD.2012.2191576
  3. S. Li, Y. Wang, X. Li, W. Wei, G. Zhao, and P. He, "Review of de-icing methods for transmission lines," in Proc. Int. Conf. Intel. Syst. Design Eng. Appl., Vol. 2, pp. 310-313, 2010.
  4. C. Volat, M. Farzaneh, and A. Leblond, "De-icing/ anti-icing techniques for power lines: Current methods and future direction," in Proc. 11th Int. Workshop Atmos. Icing Structure, pp. 1-11, 2005.
  5. Y. Chen, Q. Wang, B. Gu, Y. Cai, and F. Wen, "Research on the operating process of DC de-icer and its de-icing efficiency in china southern power grid," 2012 Conference on Power & Energy - IPEC, pp. 583-588, 2012.
  6. C. Wang, J. Wen, S. Li, X. Ma, and J. Wang, "Design on DC de-icing schemes for high voltage transmission line," in Proc. 5th Critical Infrastructure Int. Conf., pp. 1-5, Sep. 2010.
  7. P. Hu, D. Jiang, Y. Zhou, Y. Liang, J. Guo, and Z. Lin, "Energy-balancing control strategy for modular multilevel converters under submodule fault conditions," IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 5021-5030, Sep. 2014. https://doi.org/10.1109/TPEL.2013.2284919
  8. P. Hu and D. Jiang, "A level-increased nearest level modulation method for modular multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1836- 1842, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2325875
  9. Y. Zhou, D. Jiang, P. Hu, J. Guo, Y. Liang, and Z. Lin, "A prototype of modular multilevel converters," IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3267-3278, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2278338
  10. A. Hassanpoor, A. Nami, and S. Norrga, "Tolerance band adaptation method for dynamic operation of grid-connected modular multilevel converters," IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8172-8181, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2521480
  11. J. Guo, D. Jiang, Y. Zhou, P. Hu, Z. Lin, and Y. Liang, "Energy storable VSC-HVDC system based on modular multilevel converter," International Journal of Electrical Power & Energy Systems, Vol. 78, pp. 269-276, Jun. 2016. https://doi.org/10.1016/j.ijepes.2015.11.074
  12. S. Cui and S. Sul, "A comprehensive DC short-circuit fault ride through strategy of hybrid modular multilevel converters (MMCs) for overhead line transmission," IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7780-7796, Nov. 2016. https://doi.org/10.1109/TPEL.2015.2513426
  13. J. Xu, P. Zhao, and C. Zhao, "Reliability analysis and redundancy configuration of mmc with hybrid submodule topologies," IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2720-2729, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2444877
  14. M. Glinka, and R. Marquardt, "A new AC/AC multilevel converter family," IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 662-669, Jun. 2005. https://doi.org/10.1109/TIE.2005.843973
  15. A. Antonopoulos, K. Ilves, L. Angquist, and H. P. Nee, "On interaction between internal converter dynamics and current control of high-performance high-power AC motor drives with modular multilevel converters," 2010 IEEE Energy Conversion Congress and Exposition, pp. 4293-4298, 2010.
  16. M. Hagiwara, K. Nishimura, and H. Akagi, "A medium-voltage motor drive with a modular multilevel PWM inverter," IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1786-1799, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2042303
  17. A. J. Korn, M. Winkelnkemper, and P. Steimer. "Low output frequency operation of the Modular Multi-Level Converter", in 2010 IEEE Energy Conversion Congress and Exposition, pp. 3993-3997, 2010.
  18. A. Antonopoulos, L. Ä ngquist, S. Norrga, K. Ilves and H. P. Nee, "Modular multilevel converter ac motor drives with constant torque form zero to nominal speed," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 739-746, 2012.
  19. Y. Liang and C. O. Nwankpa, "A new type of STATCOM based on cascading voltage-source inverters with phaseshifted unipolar SPWM," IEEE Trans. Ind. Appl., Vol. 35, No. 5, pp. 1118-1123, Sep./Oct. 1999. https://doi.org/10.1109/28.793373
  20. G. P. A. Miet, O. A. L. Mieee, G. B. Mieee, and J. M. Smieee, "Transformerless STATCOM based on a fivelevel modular multilevel converter," 2009 13th European Conference on Power Electronics and Applications, pp. 1-10, 2009.
  21. M. Hagiwara, R. Maeda, and H. Akagi, "Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC)," IEEE Trans. Ind. Appl., Vol. 48, No. 2, pp. 720-729, Mar./ Apr. 2012. https://doi.org/10.1109/TIA.2011.2182330
  22. X. Yu, Y. Wei, and Q. Jiang, "STATCOM operation scheme of the CDSM-MMC during a pole-to-pole DC fault," IEEE Trans. Power Del., Vol. 31, No. 3, pp. 1150- 1159, Jun. 2016. https://doi.org/10.1109/TPWRD.2015.2464320
  23. G. Tsolaridis, H. A. Pereira, A. F. Cupertino, R. Teodorescu and M. Bongiorno, "Losses and cost comparison of DS-HB and SD-FB MMC based large utility grade STATCOM," 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1-6, 2016.
  24. Y. Guo, J. Xu, C. Guo, C. Zhao, C. Fu, Y. Zhou, and S. Xu, "Control of full-bridge modular multilevel converter for dc ice-melting application," 11th IET International Conference on AC and DC Power Transmission, pp. 1-8, 2015.
  25. H. Mei and J. Liu, "A novel dc ice-melting equipment based on modular multilevel cascade converter," Autom. Elect. Power Syst., Vol. 37, No. 16, pp. 96-102, Aug. 2013. (in Chinese)
  26. B. Li, S. Shi, D. Xu, and W. Wang, "Control and analysis of the modular multilevel DC de-icer with STATCOM functionality," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5465-5476, Sep. 2016. https://doi.org/10.1109/TIE.2016.2554564
  27. J. Qin, S. Debnath and M. Saeedifard, "Precharging strategy for soft startup process of modular multilevel converters based on various SM circuits," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1528-1533, 2016.
  28. Q. Yeniu, W. Jianbo, D. C. Jun, and S. Jian, "Research on the pre-charging control strategies of the series part of MMC-UPQC," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 474-478, 2016.
  29. B. Li, D. Xu, Y. Zhang, R. Yang, G. Wang, W. Wang, and D. Xu, "Closed-loop precharge control of modular multilevel converters during start-up processes," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 524-531, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2334055
  30. Y. Zhou, D. Jiang, J. Guo, P. Hu and Y. Liang, "Analysis and control of modular multilevel converters under unbalanced conditions," IEEE Trans. Power Del., Vol. 28, No. 4, pp. 1986-1995, Oct. 2013. https://doi.org/10.1109/TPWRD.2013.2268981
  31. Z. Xu, H. Xiao, and Z. Zhang, "Selection methods of main circuit parameters for modular multilevel converters," in IET Renewable Power Generation, Vol. 10, No. 6, pp. 788-797, Jul. 2016. https://doi.org/10.1049/iet-rpg.2015.0434