DOI QR코드

DOI QR Code

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice

  • Received : 2017.03.07
  • Accepted : 2017.03.30
  • Published : 2018.03.01

Abstract

Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine ${\beta}-synthase$ and down-regulation of ${\gamma}-glutamylcysteine$ ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.

Keywords

References

  1. Andersen, M. L., Martins, P. J., D'Almeida, V., Santos, R. F., Bignotto, M. and Tufik, S. (2004) Effects of paradoxical sleep deprivation on blood parameters associated with cardiovascular risk in aged rats. Exp. Gerontol. 39, 817-824. https://doi.org/10.1016/j.exger.2004.02.007
  2. Anisimov, V. N., Piskunova, T. S., Popovich, I. G., Zabezhinski, M. A., Tyndyk, M. L., Egormin, P. A., Yurova, M. V., Rosenfeld, S. V., Semenchenko, A. V., Kovalenko, I. G., Poroshina, T. E. and Berstein, L. M. (2010) Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY) 2, 945-958.
  3. Baker, D. H. (2006) Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S-1675S. https://doi.org/10.1093/jn/136.6.1670S
  4. Barja de, Q. G., Perez-Campo, R. and Lopez, T. M. (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem. J. 272, 247-250. https://doi.org/10.1042/bj2720247
  5. Benevenga, N. J. and Steele, R. D. (1984) Adverse effects of excessive consumption of amino acids. Annu. Rev. Nutr. 4, 157-181. https://doi.org/10.1146/annurev.nu.04.070184.001105
  6. Brattstrom, L., Lindgren, A., Israelsson, B., Andersson, A. and Hultberg, B. (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J. Intern. Med. 236, 633-641. https://doi.org/10.1111/j.1365-2796.1994.tb00856.x
  7. Brosnan, J. T. and Brosnan, M. E. (2006) The sulfur-containing amino acids: an overview. J. Nutr. 136, 1636S-1640S. https://doi.org/10.1093/jn/136.6.1636S
  8. Cabrero, C., Puerta, J. and Alemany, S. (1987) Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur. J. Biochem. 170, 299-304. https://doi.org/10.1111/j.1432-1033.1987.tb13699.x
  9. Chen, T. S., Richie, J. P., Nagasawa, H. T. and Lang, C. A. (2000) Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice. Mech. Ageing Dev. 120, 127-139.
  10. Dayal, S. and Lentz, S. R. (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler. Thromb. Vasc. Biol. 28, 1596-1605. https://doi.org/10.1161/ATVBAHA.108.166421
  11. Finkelstein, J. D. and Martin, J. J. (1986) Methionine metabolism in mammals. Adaptation to methionine excess. J. Biol. Chem. 261, 1582-1587.
  12. Finkelstein, J. D. and Martin, J. J. (2000) Homocysteine. Int. J. Biochem. Cell Biol. 32, 385-389. https://doi.org/10.1016/S1357-2725(99)00138-7
  13. Gimenez, R. and Aguilar, J. (2003) Effects of cytidine 5'-diphosphocholine on plasma homocysteine levels in rat. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 134, 271-276. https://doi.org/10.1016/S1096-4959(02)00258-0
  14. Grillo, M. A. (1985) Metabolism and function of polyamines. Int. J. Biochem. 17, 943-948. https://doi.org/10.1016/0020-711X(85)90238-1
  15. Harper, A. E., Benevenga, N. J. and Wohlhueter, R. M. (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 50, 428-558. https://doi.org/10.1152/physrev.1970.50.3.428
  16. Heafield, M. T., Fearn, S., Steventon, G. B., Waring, R. H., Williams, A. C. and Sturman, S. G. (1990) Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neurosci. Lett. 110, 216-220. https://doi.org/10.1016/0304-3940(90)90814-P
  17. Iciek, M., Chwatko, G., Lorenc-Koci, E., Bald, E. and Wlodek, L. (2004) Plasma levels of total, free and protein bound thiols as well as sulfane sulfur in different age groups of rats. Acta Biochim. Pol. 51, 815-824.
  18. Iyamu, E. W., Perdew, H. and Woods, G. M. (2008) Cysteine-iron promotes arginase activity by driving the Fenton reaction. Biochem. Biophys. Res. Commun. 376, 116-120. https://doi.org/10.1016/j.bbrc.2008.08.102
  19. Jacobs, R. L., House, J. D., Brosnan, M. E. and Brosnan, J. T. (1998) Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47, 1967-1970. https://doi.org/10.2337/diabetes.47.12.1967
  20. Kaplowitz, N., Aw, T. Y. and Ookhtens, M. (1985) The regulation of hepatic glutathione. Ann. Rev. Pharmacol. Toxicol. 25, 715-744.
  21. Kim, S. K. and Kim, Y. C. (2005) Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J. Hepatol. 42, 907-913. https://doi.org/10.1016/j.jhep.2005.01.017
  22. Kim, S. K., Seo, J. M., Jung, Y. S., Kwak, H. E. and Kim, Y. C. (2003) Alterations in hepatic metabolism of sulfur-containing amino acids induced by ethanol in rats. Amino Acids 24, 103-110.
  23. Krumdieck, C. L. and Prince, C. W. (2000) Mechanisms of homocysteine toxicity on connective tissues: implications for the morbidity of aging. J. Nutr. 130, 365S-368S. https://doi.org/10.1093/jn/130.2.365S
  24. Kwak, H. K., Kim, Y. M., Oh, S. J. and Kim, S. K. (2015) Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem. Pharmacol. 96, 256-266. https://doi.org/10.1016/j.bcp.2015.05.014
  25. Liu, R. and Choi, J. (2000) Age-associated decline in ${\gamma}$-glutamylcysteine synthetase gene expression in rats. Free Radic. Biol. Med. 28, 566-574. https://doi.org/10.1016/S0891-5849(99)00269-5
  26. Lu, S. C., Garcia-Ruiz, C., Kuhlenkamp, J., Ookhtens, M., Salas-Prato, M. and Kaplowitz, N. (1990) Hormonal regulation of glutathione efflux. J. Biol. Chem. 265, 16088-16095.
  27. Lu, S. C. (2013) Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143-3153. https://doi.org/10.1016/j.bbagen.2012.09.008
  28. Martins, P. J., Galdieri, L. C., Souza, F. G., Andersen, M. L., Benedito-Silva, A. A., Tufik, S. and D'Almeida, V. (2005) Physiological variation in plasma total homocysteine concentrations in rats. Life Sci. 76, 2621-2629. https://doi.org/10.1016/j.lfs.2004.12.011
  29. Mato, J. M. and Lu, S. C. (2007) Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45, 1306-1312. https://doi.org/10.1002/hep.21650
  30. Mills, B. J., Weiss, M. M., Lang, C. A., Liu, M. C. and Ziegler, C. (2000) Blood glutathione and cysteine changes in cardiovascular disease. J. Lab. Clin. Med. 135, 396-401.
  31. Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R. and Smith-Wheelock, M. (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119-125. https://doi.org/10.1111/j.1474-9726.2005.00152.x
  32. Nakata, K., Kawase, M., Ogino, S., Kinoshita, C., Murata, H., Sakaue, T., Ogata, K. and Ohmori, S. (1996) Effects of age on levels of cysteine, glutathione and related enzyme activities in livers of mice and rats and an attempt to replenish hepatic glutathione level of mouse with cysteine derivatives. Mech. Ageing Dev. 90, 195-207. https://doi.org/10.1016/0047-6374(96)01771-X
  33. Orentreich, N., Matias, J. R., DeFelice, A. and Zimmerman, J. A. (1993) Low methionine ingestion by rats extends life span. J. Nutr. 123, 269-274.
  34. Ou, X., Yang, H., Ramani, K., Ara, A. I., Chen, H., Mato, J. M. and Lu, S. C. (2007) Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochem. J. 401, 87-96. https://doi.org/10.1042/BJ20061119
  35. Paredes, J., Jones, D. P., Wilson, M. E. and Herndon, J. G. (2014) Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). Age (Dordr) 36, 719-732. https://doi.org/10.1007/s11357-014-9615-6
  36. Ratnam, S., Maclean, K. N., Jacobs, R. L., Brosnan, M. E., Kraus, J. P. and Brosnan, J. T. (2002) Hormonal regulation of cystathionine ${\beta}$-synthase expression in liver. J. Biol. Chem. 277, 42912-42918. https://doi.org/10.1074/jbc.M206588200
  37. Reid, M. and Jahoor, F. (2001) Glutathione in disease. Curr. Opin. Clin. Nutr. Metab. Care 4, 65-71. https://doi.org/10.1097/00075197-200101000-00012
  38. Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N. and Zimmerman, J. A. (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 8, 1302-1307. https://doi.org/10.1096/fasebj.8.15.8001743
  39. Rikans, L. E. and Kosanke, S. D. (1984) Effect of aging on liver glutathione levels and hepatocellular injury from carbon tetrachloride, allyl alcohol or galactosamine. Drug Chem. Toxicol. 7, 595-604. https://doi.org/10.3109/01480548409042822
  40. Selhub, J., Jacques, P. F., Wilson, P. W., Rush, D. and Rosenberg, I. H. (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270, 2693-2698.
  41. Stipanuk, M. H. (1986) Metabolism of sulfur-containing amino acids. Annu. Rev. Nutr. 6, 179-209. https://doi.org/10.1146/annurev.nu.06.070186.001143
  42. Stipanuk, M. H. (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24, 539-577. https://doi.org/10.1146/annurev.nutr.24.012003.132418
  43. Stipanuk, M. H., Dominy, J. E., Jr., Lee, J. I. and Coloso, R. M. (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 136, 1652S-1659S. https://doi.org/10.1093/jn/136.6.1652S
  44. Stromme, J. H., Rustad, P., Steensland, H., Theodorsen, L. and Urdal, P. (2004) Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 degrees C: part of the Nordic Reference Interval Project. Scand. J. Clin. Lab. Invest. 64, 371-384. https://doi.org/10.1080/00365510410002742
  45. Suh, J. H., Shenvi, S. V., Dixon, B. M., Liu, H., Jaiswal, A. K., Liu, R. M. and Hagen, T. M. (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U.S.A. 101, 3381-3386. https://doi.org/10.1073/pnas.0400282101
  46. Troen, A. M., Lutgens, E., Smith, D. E., Rosenberg, I. H. and Selhub, J. (2003) The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. U.S.A. 100, 15089-15094. https://doi.org/10.1073/pnas.2436385100
  47. Uthus, E. O. and Brown-Borg, H. M. (2003) Altered methionine metabolism in long living Ames dwarf mice. Exp. Gerontol. 38, 491-498.
  48. Uthus, E. O. and Brown-Borg, H. M. (2006) Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech. Ageing Dev. 127, 444-450.
  49. Yang, M. J., Sim, S., Jeon, J. H., Jeong, E., Kim, H. C., Park, Y. H. and Kim, I. B. (2013) Mitral and tufted cells are potential cellular targets of nitration in the olfactory bulb of aged mice. PLoS ONE 8, e59673. https://doi.org/10.1371/journal.pone.0059673
  50. Yang, C. S., Chou, S. T., Liu, L., Tsai, P. J. and Kuo, J. S. (1995) Effect of ageing on human plasma glutathione concentrations as determined by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B, Biomed. Appl. 674, 23-30. https://doi.org/10.1016/0378-4347(95)00287-8

Cited by

  1. Beneficial Effects of Fermented Papaya Preparation (FPP ® ) Supplementation on Redox Balance and Aging in a Mouse Model vol.9, pp.2, 2018, https://doi.org/10.3390/antiox9020144
  2. Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity vol.42, pp.4, 2018, https://doi.org/10.1007/s11357-020-00210-3
  3. Imbalanced dietary methionine-to-sulfur amino acid ratio can affect amino acid profiles, antioxidant capacity, and intestinal morphology of piglets vol.6, pp.4, 2018, https://doi.org/10.1016/j.aninu.2020.03.009