References
- Chen, G., Li, X., Huang, M., Li, M., Zhou, X., Li, Y. and Bai, J. (2016) Thioredoxin-1 increases survival in sepsis by inflammatory response through suppressing endoplasmic reticulum stress. Shock 46, 67-74. https://doi.org/10.1097/SHK.0000000000000570
- Cohen, J. I., Roychowdhury, S., DiBello, P. M., Jacobsen, D. W. and Nagy, L. E. (2009) Exogenous thioredoxin prevents ethanol-induced oxidative damage and apoptosis in mouse liver. Hepatology 49, 1709-1717. https://doi.org/10.1002/hep.22837
- Cuadrado, A. and Nebreda, A. R. (2010) Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403-417.
- D'Annunzio, V., Perez, V., Boveris, A., Gelpi, R. J. and Poderoso, J. J. (2016) Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol. Res. 109, 24-31. https://doi.org/10.1016/j.phrs.2016.03.009
- Dai, M. X., Zheng, X. H., Yu, J., Yin, T., Ma, M. J., Zhang, L., Liu, M., Ma, Y., Liu, L. W., Gao, X., Li, Y., Song, L. Q. and Wang, H. C. (2014) The impact of intermittent and repetitive cold stress exposure on endoplasmic reticulum stress and instability of atherosclerotic plaques. Cell. Physiol. Biochem. 34, 393-404. https://doi.org/10.1159/000363008
- Dunn, S., Vohra, R. S., Murphy, J. E., Homer-Vanniasinkam, S., Walker, J. H. and Ponnambalam, S. (2008) The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochem. J. 409, 349-355. https://doi.org/10.1042/BJ20071196
- Gleissner, C. A. (2016) Translational atherosclerosis research: from experimental models to coronary artery disease in humans. Atherosclerosis 248, 110-116. https://doi.org/10.1016/j.atherosclerosis.2016.03.013
- Guo, R., Su, Y., Liu, B., Li, S., Zhou, S. and Xu, Y. (2014) Resveratrol suppresses oxidised low-density lipoprotein-induced macrophage apoptosis through inhibition of intracellular reactive oxygen species generation, LOX-1, and the p38 MAPK pathway. Cell. Physiol. Biochem. 34, 603-616.
- Holmgren, A. (1985) Thioredoxin. Annu. Rev. Biochem. 54, 237-271. https://doi.org/10.1146/annurev.bi.54.070185.001321
- Hsieh, C. C. and Papaconstantinou, J. (2006) Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 20, 259-268. https://doi.org/10.1096/fj.05-4376com
- Inoue, K., Arai, Y., Kurihara, H., Kita, T. and Sawamura, T. (2005) Over-expression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ. Res. 97, 176-184. https://doi.org/10.1161/01.RES.0000174286.73200.d4
- Ishiyama, J., Taguchi, R., Yamamoto, A. and Murakami, K. (2010) Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 209, 118-124. https://doi.org/10.1016/j.atherosclerosis.2009.09.004
- Janicke, R. U., Sprengart, M. L., Wati, M. R. and Porter, A. G. (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360. https://doi.org/10.1074/jbc.273.16.9357
- Kamimoto, Y., Sugiyama, T., Kihira, T., Zhang, L., Murabayashi, N., Umekawa, T., Nagao, K., Ma, N., Toyoda, N., Yodoi, J. and Sagawa, N. (2010) Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia 53, 2046-2055. https://doi.org/10.1007/s00125-010-1784-y
- Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Moriwaki, H., Murase, T., Sawamura, T., Masaki, T., Hashimoto, N. and Kita, T. (1999) Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99, 3110-3117. https://doi.org/10.1161/01.CIR.99.24.3110
- Laurent, T. C., Moore, E. C. and Reichard, P. (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from escherichia coli B. J. Biol. Chem. 239, 3436-3444.
- Liao, X., Sluimer, J. C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., Robbins, J., Martinez, J. and Tabas, I. (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545-553. https://doi.org/10.1016/j.cmet.2012.01.022
- Lin, Y. W., Liu, P. S., Adhikari, N., Hall, J. L. and Wei, L. N. (2015) RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J. Mol. Cell. Cardiol. 79, 287-294. https://doi.org/10.1016/j.yjmcc.2014.12.009
- Luo, Y., Sun, G., Dong, X., Wang, M., Qin, M., Yu, Y. and Sun, X. (2015) Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS ONE 10, e0120259. https://doi.org/10.1371/journal.pone.0120259
- Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J. and Taketo, M. M. (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178, 179-185. https://doi.org/10.1006/dbio.1996.0208
- Mehta, J. L., Sanada, N., Hu, C. P., Chen, J., Dandapat, A., Sugawara, F., Satoh, H., Inoue, K., Kawase, Y., Jishage, K., Suzuki, H., Takeya, M., Schnackenberg, L., Beger, R., Hermonat, P. L., Thomas, M. and Sawamura, T. (2007) Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ. Res. 100, 1634-1642. https://doi.org/10.1161/CIRCRESAHA.107.149724
- Moore, K. J., Sheedy, F. J. and Fisher, E. A. (2013) Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709-721. https://doi.org/10.1038/nri3520
- Moore, K. J. and Tabas, I. (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341-355. https://doi.org/10.1016/j.cell.2011.04.005
- Pirillo, A., Norata, G. D. and Catapano, A. L. (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013, 152786.
- Powis, G. and Montfort, W. R. (2001) Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct. 30, 421-455. https://doi.org/10.1146/annurev.biophys.30.1.421
- Rusinol, A. E., Thewke, D., Liu, J., Freeman, N., Panini, S. R. and Sinensky, M. S. (2004) AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J. Biol. Chem. 279, 1392-1399. https://doi.org/10.1074/jbc.M308619200
- Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K. and Ichijo, H. (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
- Schaeffer, D. F., Riazy, M., Parhar, K. S., Chen, J. H., Duronio, V., Sawamura, T. and Steinbrecher, U. P. (2009) LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J. Lipid Res. 50, 1676-1684.
- Seimon, T. and Tabas, I. (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50 Suppl, S382-S387. https://doi.org/10.1194/jlr.R800032-JLR200
- Tabas, I. (2009) Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid. Redox Signal. 11, 2333-2339. https://doi.org/10.1089/ars.2009.2469
- Tabas, I. (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36-46. https://doi.org/10.1038/nri2675
- Tao, L., Gao, E., Hu, A., Coletti, C., Wang, Y., Christopher, T. A., Lopez, B. L., Koch, W. and Ma, X. L. (2006) Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stress. Br. J. Pharmacol. 149, 311-318. https://doi.org/10.1038/sj.bjp.0706853
- Wang, B., Tian, S., Wang, J., Han, F., Zhao, L., Wang, R., Ning, W., Chen, W. and Qu, Y. (2015) Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke. Brain Res. 1615, 89-97. https://doi.org/10.1016/j.brainres.2015.04.033
- Wang, W. L., Meng, Z. X., Zhou, S. J., Li, C. J., Chen, R., Lv, L., Ma, Z. J., Yu, D. M. and Yu, P. (2013) Reduced beta2-glycoprotein I protects macrophages from ox-LDL-induced foam cell formation and cell apoptosis. Lipids Health Dis. 12, 174. https://doi.org/10.1186/1476-511X-12-174
- Xia, X., Li, Y., Su, Q., Huang, Z., Shen, Y., Li, W. and Yu, C. (2015) Inhibitory effects of Mycoepoxydiene on macrophage foam cell formation and atherosclerosis in ApoE-deficient mice. Cell Biosci. 5, 23. https://doi.org/10.1186/s13578-015-0017-y
- Yamawaki, H., Haendeler, J. and Berk, B. C. (2003) Thioredoxin: a key regulator of cardiovascular homeostasis. Circ. Res. 93, 1029-1033. https://doi.org/10.1161/01.RES.0000102869.39150.23
- Yoshimoto, R., Fujita, Y., Kakino, A., Iwamoto, S., Takaya, T. and Sawamura, T. (2011) The discovery of LOX-1, its ligands and clinical significance. Cardiovasc. Drugs Ther. 25, 379-391. https://doi.org/10.1007/s10557-011-6324-6
Cited by
- Mindin deficiency in macrophages protects against foam cell formation and atherosclerosis by targeting LXR-β vol.132, pp.11, 2018, https://doi.org/10.1042/CS20180033
- Prognostic Utility Of Novel Biomarkers in Aortic Valve Stenosis vol.73, pp.2, 2018, https://doi.org/10.2478/prolas-2019-0016
- Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development vol.20, pp.13, 2018, https://doi.org/10.3390/ijms20133294
- Ox-LDL Causes Endothelial Cell Injury Through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress vol.14, pp.None, 2018, https://doi.org/10.2147/dddt.s231916
- The predictive value of soluble osteoclast-associated receptor for the prognosis of acute coronary syndrome vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-91054-0