DOI QR코드

DOI QR Code

Neuroprotective Effect of Duloxetine on Chronic Cerebral Hypoperfusion-Induced Hippocampal Neuronal Damage

  • Park, Jin-A (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • Lee, Choong-Hyun (Department of Pharmacy, College of Pharmacy, Dankook University)
  • Received : 2016.11.01
  • Accepted : 2017.01.09
  • Published : 2018.03.01

Abstract

Chronic cerebral hypoperfusion (CCH), which is associated with onset of vascular dementia, causes cognitive impairment and neuropathological alterations in the brain. In the present study, we examined the neuroprotective effect of duloxetine (DXT), a potent and balanced serotonin/norepinephrine reuptake inhibitor, on CCH-induced neuronal damage in the hippocampal CA1 region using a rat model of permanent bilateral common carotid arteries occlusion. We found that treatment with 20 mg/kg DXT could attenuate the neuronal damage, the reduction of phosphorylations of mTOR and p70S6K as well as the elevations of $TNF-{\alpha}$ and $IL-1{\beta}$ levels in the hippocampal CA1 region at 28 days following CCH. These results indicate that DXT displays the neuroprotective effect against CCH-induced hippocampal neuronal death, and that neuroprotective effect of DXT may be closely related with the attenuations of CCH-induced decrease of mTOR/p70S6K signaling pathway as well as CCH-induced neuroinflammatory process.

Keywords

References

  1. Cechetti, F., Pagnussat, A. S., Worm, P. V., Elsner, V. R., Ben, J., da Costa, M. S., Mestriner, R., Weis, S. N. and Netto, C. A. (2012) Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res. Bull. 87, 109-116. https://doi.org/10.1016/j.brainresbull.2011.10.006
  2. Choi, H. S., Park, J. H., Ahn, J. H., Hong, S., Cho, J. H., Won, M. H. and Lee, C. H. (2015) The anti-inflammatory activity of duloxetine, a serotonin/norepinephrine reuptake inhibitor, prevents kainic acid-induced hippocampal neuronal death in mice. J. Neurol. Sci. 358, 390-397. https://doi.org/10.1016/j.jns.2015.10.001
  3. Dufner, A. and Thomas, G. (1999) Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100-109. https://doi.org/10.1006/excr.1999.4683
  4. Farkas, E., Donka, G., de Vos, R. A., Mihaly, A., Bari, F. and Luiten, P. G. (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol. 108, 57-64. https://doi.org/10.1007/s00401-004-0864-9
  5. Farkas, E., Luiten, P. G. and Bari, F. (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res. Rev. 54, 162-180. https://doi.org/10.1016/j.brainresrev.2007.01.003
  6. Gingras, A. C., Raught, B. and Sonenberg, N. (2001) Control of translation by the target of rapamycin proteins. Prog. Mol. Subcell. Biol. 27, 143-174.
  7. Goldstein, D. J., Lu, Y., Detke, M. J., Lee, T. C. and Iyengar, S. (2005) Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 116, 109-118.
  8. Guay, D. R. (2005) Duloxetine for management of stress urinary incontinence. Am. J. Geriatr. Pharmacother. 3, 25-38. https://doi.org/10.1016/j.amjopharm.2005.03.004
  9. He, X. L., Wang, Y. H., Bi, M. G. and Du, G. H. (2012) Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Eur. J. Pharmacol. 680, 41-48.
  10. Janelidze, S., Hu, B. R., Siesjo, P. and Siesjo, B. K. (2001) Alterations of Akt1 ($PKB{\alpha}$) and $p70^{S6K}$ in transient focal ischemia. Neurobiol. Dis. 8, 147-154. https://doi.org/10.1006/nbdi.2000.0325
  11. Jia, Y., Jin, W., Xiao, Y., Dong, Y., Wang, T., Fan, M., Xu, J., Meng, N., Li, L. and Lv, P. (2015) Lipoxin A4 methyl ester alleviates vascular cognition impairment by regulating the expression of proteins related to autophagy and ER stress in the rat hippocampus. Cell. Mol. Biol. Lett. 20, 475-487.
  12. Koh, P. O. (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci. Lett. 444, 74-78. https://doi.org/10.1016/j.neulet.2008.08.024
  13. Koh, P. O., Cho, J. H., Won, C. K., Lee, H. J., Sung, J. H. and Kim, M. O. (2008) Estradiol attenuates the focal cerebral ischemic injury through mTOR/p70S6 kinase signaling pathway. Neurosci. Lett. 436, 62-66. https://doi.org/10.1016/j.neulet.2008.02.061
  14. Koh, P. O. (2013) Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation. Neurosci. Lett. 555, 7-11. https://doi.org/10.1016/j.neulet.2013.09.001
  15. Laplante, M. and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell 149, 274-293. https://doi.org/10.1016/j.cell.2012.03.017
  16. Lee, C. H., Park, J. H., Ahn, J. H. and Won, M. H. (2016a) Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Exp. Ther. Med. 11, 2240-2246. https://doi.org/10.3892/etm.2016.3216
  17. Lee, T. K., Park, J. H., Ahn, J. H., Shin, M. C., Cho, J. H., Bae, E. J., Kim, Y. M., Won, M. H. and Lee, C. H. (2016b) Pretreated duloxetine protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury through decreases of glial activation and oxidative stress. J. Neurol. Sci. 370, 229-236. https://doi.org/10.1016/j.jns.2016.09.059
  18. Nemeroff, C. B., Schatzberg, A. F., Goldstein, D. J., Detke, M. J., Mallinckrodt, C., Lu, Y. and Tran, P. V. (2002) Duloxetine for the treatment of major depressive disorder. Psychopharmacol. Bull. 36, 106-132.
  19. Park, J.A. and Lee, C.H. (2016) Time-course change of the mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J. Vet. Sci. [Epub ahead of print].
  20. Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., Burke, J. R., Hurd, M. D., Potter, G. G., Rodgers, W. L., Steffens, D. C., Willis, R. J. and Wallace, R. B. (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29, 125-132. https://doi.org/10.1159/000109998
  21. Pullen, N. and Thomas, G. (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett. 410, 78-82. https://doi.org/10.1016/S0014-5793(97)00323-2
  22. Qu, J., Zhou, Q., Du, Y., Zhang, W., Bai, M., Zhang, Z., Xi, Y., Li, Z. and Miao, J. (2014) Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion. Br. J. Pharmacol. 171, 3702-3715.
  23. Shi, G. D., OuYang, Y. P., Shi, J. G., Liu, Y., Yuan, W. and Jia, L. S. (2011) PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun. 404, 941-945. https://doi.org/10.1016/j.bbrc.2010.12.085
  24. Singh, P. and Sharma, B. (2016) Selective serotonin-norepinephrine re-uptake inhibition limits renovas-cular-hypertension induced cognitive impairment, endothelial dysfunction, and oxidative stress injury. Curr. Neurovasc. Res. 13, 135-146. https://doi.org/10.2174/1567202613666160226152549
  25. Ueno, Y., Koike, M., Shimada, Y., Shimura, H., Hira, K., Tanaka, R., Uchiyama, Y., Hattori, N. and Urabe T. (2015) L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J. Cereb. Blood Flow Metab. 35, 382-391.
  26. Yang, H., Shi, O., Jin, Y., Henrich-Noack, P., Qiao, H., Cai, C., Tao, H. and Tian, X. (2014) Functional protection of learning and memory abilities in rats with vascular dementia. Restor. Neurol. Neurosci. 32, 689-700.

Cited by

  1. Duloxetine Protects Human Neuroblastoma Cells from Oxidative Stress-Induced Cell Death Through Akt/Nrf-2/HO-1 Pathway pp.1573-6903, 2017, https://doi.org/10.1007/s11064-017-2433-3
  2. Targeting Pathological Tau by Small Molecule Inhibition of the Poly(A):MSUT2 RNA-Protein Interaction vol.11, pp.15, 2018, https://doi.org/10.1021/acschemneuro.0c00214
  3. Effects of cerebral hypoperfusion on the cerebral white matter: a meta-analysis vol.81, pp.3, 2018, https://doi.org/10.21307/ane-2021-029