DOI QR코드

DOI QR Code

러시아의 GLONASS 항법 파라미터 및 성능 분석

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS

  • 최창묵 (해군사관학교 항해운용학과)
  • 투고 : 2018.02.05
  • 심사 : 2018.02.27
  • 발행 : 2018.02.28

초록

러시아의 위성항법시스템인 GLONASS(GLObal NAvigation Satellite System)는 2011년 10월 이후 정상적으로 재가동되었으며 지속적으로 시스템 구성이 현대화되고 있다. 최근 2017년 10월 16일 발사된 GLONASS 752 위성(GLONASS-M)이 정상 작동됨에 따라서 2세대 위성인 GLONASS-M 22기와 3세대 위성인 GLONASS-K 1기로 총 24기 위성이 구축되었다. 따라서 본 논문은 현재의 GLONASS 위성 항법시스템의 항법위성으로부터 실데이터를 수신하여 항법파라미터 특성 및 성능을 분석하고자 하였다. 수신된 데이터를 분석한 결과 항상 항법위성 5~11기가 동시에 가시선상에 있어서 항법신호를 수신할 수 있음을 확인하였으며, 실험에 이용된 위성들의 DOP(Dilution of Position)는 GDOP, PDOP, HDOP, VDOP, TDOP 각각 2.790, 2.424, 1.169, 2.123, 1.381을 얻었다. 또한 수신된 데이터의 위치 정밀도를 분석한 결과 표준편차 1.4m로 매우 우수하였다. 결과적으로 GLONASS와 GPS(Global Positioning System)는 성능이 거의 동일하며 향후 GLONASS 시스템의 이용 확대가 기대된다.

The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

키워드

참고문헌

  1. Beidou Website(2017), http://www.beidou.gov.cn.
  2. Choi, C. M.(2017), Radionavigation, Sejong press, pp. 159-210.
  3. Choi, C. M. and Ko, K. S.(2015), "A Study on Development Direction of Navigation System for NAVWAR", J. of KIICE, vol. 19, no. 3, pp. 756-763.
  4. GALILEO Website(2017), http://galileognss.eu.
  5. GLONASS Website(2018), https://www.glonass-iac.ru.
  6. GPS Website(2018), http://www.gps.gov.
  7. GPS world staff(2017), GLONASS ground station goes live in South Africa, http://gpsworld.com.
  8. Kaplan, E. D. and Hegarty, C. J.(2005), Understanding GPS: Principles and Applications, 2nd-ed., Artech House, pp. 595-614.
  9. Langley, R. B.(2017), "Innovation: GLONASS-past, present and future", GPS world, http://www.gpsworld.com.
  10. Li, X. et al.(2015), "Precise positioning with current multi-constellation Global Navigation Satellite System: GPS, GLONASS, Galileo and BeiDou", Scientific reports, pp. 1-14.
  11. Novatel(2017), Reference Manual, http://novatel.com.
  12. Russian Aviation News(2014), Russia to construct 50 GLONASS stations in 36 countries, http://www.ruaviation.com.
  13. Russian FSA(2012), Federal program for GLONASS sustainment, development and use for 2012-2020.
  14. Russia's Information and Analysis Center for Positioning, Navigation and Timing(2018), GLONASS STATUS, http://www.glonass-iac.ru/en/GLONASS/.
  15. Russian Space Website(2018), http:www.russianspace web.com.
  16. Urlichich, Y. et al.(2011), "GLONASS Developing Strategies for the Future", GPS world, Vol. 22, No. 4, pp. 42-49.
  17. Wikipedia(2017), GLONASS, https://en.wikipedia.org/wiki /GLONASS.