DOI QR코드

DOI QR Code

벼 붉은곰팡이병 감염에 대한 기상조건의 영향과 장려품종의 반응

Weather Effect and Response of Promoted Rice Varieties on Fusarium Infection in Paddy Field

  • 이데레사 (국립농업과학원유해생물팀) ;
  • 장자영 (국립농업과학원유해생물팀) ;
  • 김점순 (국립농업과학원유해생물팀) ;
  • 류재기 (국립농업과학원유해생물팀)
  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Science and Technology) ;
  • Jang, Ja Yeong (Microbial Safety Team, National Institute of Agricultural Science and Technology) ;
  • Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Science and Technology) ;
  • Ryu, Jae-Gee (Microbial Safety Team, National Institute of Agricultural Science and Technology)
  • 투고 : 2018.11.01
  • 심사 : 2018.11.16
  • 발행 : 2018.12.31

초록

벼 붉은곰팡이병에 대한 품종별 반응과 기상조건에 따른 감염영향을 알아보기 위하여 장려품종 재배포장의 기상자료와 수확한 벼의 이병립율과 Fusarium 균을 동정하였다. 출수개화 전인 7월 하순부터 등숙기인 9월말까지의 평균기온이 수확후 산물벼의 이병립율에 크게 영향을 주었으며, 평균기온이 비슷한 2010년과 2013년에는 같은 기간의 누적강우량, 누적 강우일수, 2일 이상 강우지속횟수와 관련이 있었다. 2010년과 2013년에 수확한 벼에서 Fusarium 균의 종복합체별 분리비율은 FGSC에 대해 각각 57%과 45%, FIESC에 대해 35%과 50%, FFSC에 대해 8%과 5%이었다. FGSC와 FFSC의 분포비율은 2010년이 2013년에 비해 높았다. Fusarium 균의 자연감염에 대한 품종반응은 26개 장려품종 중 미향 품종만이 FGSC 자연감염에 대한 저항성을 보였으며, 남평, 하이아미, 영호진미 품종은 총 Fusarium 병원균의 자연감염에 대하여 전반적인 저항성을 보였다. 그 밖의 대부분의 장려품종은 저항성 또는 감수성으로 구분할 수 없었다. 본 연구결과는 Fusarium 균 자연감염에 대한 저항성과 감수성을 판단하는 기초자료로서 의의가 있다.

Fusarium infection rate of the paddy rice grain after harvest seemed to be influenced by the average temperature from late July (before heading) to the end of September (during ripening). In case of 2010 and 2013 in which average temperature of the same period was similar, Fusarium infection was related to cumulative precipitation, cumulative precipitation days, and precipitation durations over two days. The distribution ratio of Fusarium species complex isolated from paddy rice grains after harvest was 57% in 2010 and 45% in 2013 for Fusarium graminearum species complex (FGSC), 35% and 50% for Fusarium incarnatum-equiseti species complex, and 8% and 5% for Fusarium fujikuroi species complex (FFSC). The distribution ratios of FGSC and FFSC were higher in 2010 than 2013. Among the total 26 promoted rice varieties, the 'Mihyang' showed resistant response against the natural infection with Fusarium species belonging to FGSC and the varieties of 'Nampyeong', 'Hi-ami'and 'Younghojinmi' showed resistant response against the natural infection with overall Fusarium pathogens. Majority of the promoted rice varieties could not be classified for resistance or susceptibility. These results are valuable as basic data to determine the resistance and susceptibility of rice variety against Fusarium spp. infection in the field.

키워드

SMBRCU_2018_v24n4_313_f0001.png 이미지

Fig. 1. Change in temperature and precipitation in Suwon by 10 days interval from late July to late September in 2002, 2010, and2013. (A) Average temperature, (B) Cumulative amount of rainfall, (C) Cumulative days of rainfall.

SMBRCU_2018_v24n4_313_f0002.png 이미지

Fig. 2. Distribution of Fusarium species complex isolated from 26promoted rice varieties in 2010 and 2013.

SMBRCU_2018_v24n4_313_f0003.png 이미지

Fig. 3. Fusarium infection rate (%) by maturing type of rice varieties in 2010 and 2013. Fusarium infection rate seemed to be higher in the early maturing rice varieties than the medium and mid-late maturing varieties in both years. The number in parenthesis is the number of variety tested.

SMBRCU_2018_v24n4_313_f0004.png 이미지

Fig. 4. Response of rice varieties against (A) total Fusarium spp., (B) FGSC (Fusarium head blight), (C) FFSC (Bakanae disease) in paddy field in 2010 and 2013. FGSC, F. graminearum species complex; FFSC, F. fujikuroi species complex.

Table 1. Fusarium infection rate of paddy rice grains used in the study

SMBRCU_2018_v24n4_313_t0001.png 이미지

Table 2. Temperature and precipitation of rice field in Icheon in 2002 and Suwon in 2010 and 2013

SMBRCU_2018_v24n4_313_t0002.png 이미지

Table 3. Fusarium species isolated from the promoted varieties

SMBRCU_2018_v24n4_313_t0003.png 이미지

Table 4. The promoted rice varieties used in the study

SMBRCU_2018_v24n4_313_t0004.png 이미지

Table 5. Classification of rice varieties by response to natural infection of Fusarium species complex

SMBRCU_2018_v24n4_313_t0005.png 이미지

참고문헌

  1. Codex Alimentarius International Food Standards. 2016. Code of practice for the prevention and reduction of mycotoxin contamination in cereals. URL http://www.fao.org/fao-who-codex-alimentarius/codex-texts/codes-of-practice/en/ [3 December 2018].
  2. Desjardins, A. E., Manandhar, H. K., Plattner, R. D., Manandhar, G. G., Poling, S. M. and Maragos, C. M. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66: 1020-1025. https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  3. Fernando, W. G., Paulitz, T. C., Seaman, W. L., Dutilleul, P. and Miller, J. D. 1997. Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology 87: 414-421. https://doi.org/10.1094/PHYTO.1997.87.4.414
  4. Ferrigo, D., Raiola, A. and Causin, R. 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21: 627. https://doi.org/10.3390/molecules21050627
  5. Kharbikar, L. L., Dickin, E. T. and Edwards, S. G. 2015. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat. Food Addit. Contam. A 32: 2075-2085.
  6. Lee, T., Lee, S., Kim, L.-H. and Ryu, J.-G. 2014. Occurrence of fungi and Fusarium mycotoxins in the rice samples from rice processing complexes. Res. Plant Dis. 20: 289-294. (In Korean) https://doi.org/10.5423/RPD.2014.20.4.289
  7. Marin, P., Moretti, A., Ritieni, A., Jurado, M., Vazquez, C. and Gonzalez-Jaen, M. T. 2012. Phylogenetic analysis and toxigenic profiles of Fusarium equiseti and F. acuminatum isolated from cereals from southern Europe. Food Microbiol. 31: 229-237. https://doi.org/10.1016/j.fm.2012.03.014
  8. Moss, M. O. 2002. Mycotoxin review - 2. Fusarium. Mycologist 16: 158-161.
  9. O'Donnell, K., Humber, R. A., Geiser, D. M., Kang, S., Park, B., Robert, V. A. et al. 2012. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia 104: 427-445. https://doi.org/10.3852/11-179
  10. Rossi, V., Ravanetti, A., Pattori, E. and Giosue, S. 2001. Influence of temperature and humidity on the infection of wheat spikes by some fungi causing Fusarium head blight. J. Plant Pathol. 83: 189-198.
  11. Shier, W. T., Shier, A. C., Xie, W. and Mirocha, C. J. 2001. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon. 39: 1435-1438. https://doi.org/10.1016/S0041-0101(00)00259-2
  12. Shim, H.-S., Hong, S.-G., Hong, S.-J., Kim, Y.-K., Ye, W. H. and Sung, J.-M. 2005. Detection of fungi associated with rice ear blight from rice seed in Korea. Res. Plant Dis. 11: 93-97. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.093
  13. Trail, F., Xu, H., Loranger, R. and Gadoury, D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94: 181-189. https://doi.org/10.1080/15572536.2003.11833223
  14. Webster, R. K. and Gunnell, P. S. 1992. Compendium of rice disease. APS Press, St. Paul, MN, USA. 62 pp.