DOI QR코드

DOI QR Code

국내 육성 감국의 품종별 향기성분 비교 분석

Comparative Analysis of the Flavor Compounds in Cultivated Chrysanthemum indicum L.

  • 오경열 (경남한방항노화연구원) ;
  • 구영민 (경남한방항노화연구원) ;
  • 정원민 (경남한방항노화연구원) ;
  • 신승미 (경남한방항노화연구원) ;
  • 길영숙 (경남한방항노화연구원) ;
  • 고건희 (경남한방항노화연구원) ;
  • 양기정 (경남한방항노화연구원) ;
  • 김진효 (경상대학교 응용생명과학부(BK21 플러스사업) & 농업생명과학연구원) ;
  • 이동열 (경남한방항노화연구원)
  • Received : 2018.07.11
  • Accepted : 2018.10.16
  • Published : 2018.12.30

Abstract

감국(Chrysanthemum indicum L.)은 한방재료로서 식품 및 향기제품의 소재로 활용된다. 본 연구에서는 국내에서 육성된 감국 품종별 휘발성 향기성분을 분석 및 동정하여 이들이 함유하는 화학성분을 구명하고자 수행되었다. 국내에서 육성한 네 품종(품종명 : 감국 1호, 감국 2호, 감국 3호, 원향) 감국을 동일한 시기에 같은 지역(경상남도 산청군)에서 재배하여 수확한 후 GC-MS Headspace를 이용하여 향기성분을 분석하였다. 향기성분 분석 결과 네 품종에서 23종의 성분이 동정되었고, 이 중 8개의 화합물이 공통적으로 존재하였다. 감국 1호, 감국 2호, 감국 3호에서는 3-carene, camphene, ${\beta}$-phellandrene, eucalyptol과 (+)-camphor로 등이 주요 향기성분으로 확인되었다. 감국 1호는 (+)-camphor (31.40%)를 포함하여 11개 화합물이 존재하였고, 감국 2호의 주요 향기성분으로는 camphene (25.60%)을 포함한 12개 화합물이 존재하였으며, 감국 3호는 (+)-camphor (26.88%) 등 13개 향기성분이 검출되었다. 원향에서는 주요 향기성분인 trans-piperitol (47.33%), sabinene, ${\gamma}$-terpinyl acetate을 포함한 17종류의 향기성분이 분석 되었다. 본 연구를 통해 감국 품종 간에 기능성 향기성분의 종류 및 비율의 차이가 있음을 확인하였고, 이러한 연구결과는 향후 다양한 향기제품의 산업화 소재로서 이용가치를 높일 수 있을 것으로 기대된다.

This study investigated the chemical composition of four Korean cultivated Chrysanthemum indicum L. (Gamguk 1 ho, Gamguk 2 ho, Gamguk 3 ho, and Wonhyang) which are used in the food and fragrance industries to identify their volatile flavor compounds. These compounds were analyzed using headspace GC-MS from plant samples cultivated in the same region of Korea (Sancheong-gun, Gyeongsangnam-do). A total of 23 compounds were identified, eight of which were common across the four cultivars. The major flavor components in the three Gamguk plants were identified as 3-carene, camphene, ${\beta}$-phellandrene, eucalyptol and (+)-camphor. Eleven compounds, including (+)-camphor at 31.40%, were identified in Gamguk 1 ho. Gamguk 2 ho was found to contain 12 flavor compounds, predominant of which was camphene at 25.60%. Thirteen compounds including (+)-camphor (26.88%) were identified in Gamguk 3 ho, while 17 were detected in the Wonhyang cultivar, including trans-piperitol (47.33%), sabinene, and ${\gamma}$-terpinyl acetate. These results indicate differences in the type and ratio of functional volatile flavor ingredients in Chrysanthemum indicum L. cultivars which is highly valuable as material for fragrance product development.

Keywords

SMGHBM_2018_v28n12_1523_f0001.png 이미지

Fig. 1. Total ion chromatograms of volatile flavor compounds by GC-MS Headspace analysis from Chrysanthemum indicum L. Cultivars. (A) Gamguk 1 ho, (B) Gamguk 2 ho, (C) Gamguk 3 ho, (D) Wonhyang

Table 1. GC-MS parameter for analysis of volatile compounds

SMGHBM_2018_v28n12_1523_t0001.png 이미지

Table 2. Flavor compounds from Chrysanthemum indicum L. cultivars

SMGHBM_2018_v28n12_1523_t0002.png 이미지

References

  1. Choi, S. H., Im, S. I. and Bae, J. E. 2006. Analysis of aroma components from flower tea of german chanmomile and chrysanthemum boreale makino. Kor. J. Food Cookery Sci. 22, 769-773.
  2. Yoon, O. H. and Cho, J. S. 2007. Optimization of extraction conditions for hot water extracts from Chrysanthemum indicum L. by response surface methodology. Kor. J. Food Cookery Sci. 23, 1-8.
  3. Uchio, Y. 1978. Constituents of the essential oil of Chrysanthemum japonense. Nojigiku alcohol and its acetate. Bull. Chem. Soc. Jpn. 51, 2342-2346. https://doi.org/10.1246/bcsj.51.2342
  4. Choi, H. S., Kang, E. J. and Kim, G. H. 2006. Analyses of essential oil and headspace compositions of Capsella bursa-pastoris Medicus by SDE and SPME Methods. Kor. J. Food Preserv. 13, 108-114.
  5. Woo, G. S., Yu, J. S., Hwang, I. G., Lee, Y. R., Lee, C. H., Yoon, H. S., Lee, J. S. and Jeong, H. S. 2008. Antioxidative activity of volatile compounds in flower of Chrysanthemum indicum, C. morifolium, and C. zawadskii. J. Kor. Soc. Food Sci. Nutr. 37, 805-809. https://doi.org/10.3746/jkfn.2008.37.6.805
  6. Hanafusa, M. 1993. Fragrance materials of the cosmetica: Chrysanthemum. Kouryou (in japanese) 177, pp. 107-110.
  7. Ryu, S. Y., Choi, S. U., Lee, C. O., Lee, S. H., Ahn, J. W. and Zee, O. P. 1994. Antitumor activity of some phenolic components in plants. Arch. Pharm. Res. 17, 42-44. https://doi.org/10.1007/BF02978247
  8. Kim, K. R., Zlatkis, A., Park, J. W. and Lee, U. C. 1982. Isolation of essential oils from tobacco by gas co-distillation/solvent extraction. Chromatographia 15, 559. https://doi.org/10.1007/BF02280374
  9. Koedam, A. 1988. Capillary gas chromatography in essential oil analysis. Flavour Fragr. J. 3, 141. https://doi.org/10.1002/ffj.2730030311
  10. Kim, Y. D., Jeong, Y. S., Seo, Y. R., Kim, J. C., Song, H. J. and Choi, M. S. 2015. Analysis of volatile compounds by headspace GC-MS and amino acid of Allium Hookeri. J. Agric. Life Sci. 49, 17-26.
  11. Dorman, H. J. D. and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88, 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  12. Miyazawa, M. and Yamafuji, C. 2005. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 53, 1765-1768. https://doi.org/10.1021/jf040019b
  13. Ciobanu, A., Landy, D. and Fourmentin, S. 2013. Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 53, 110-114. https://doi.org/10.1016/j.foodres.2013.03.048
  14. Tiwari, M. and Kakkar, P. 2009. Plant derived antioxidantsgeraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol. In vitro 23, 295-301. https://doi.org/10.1016/j.tiv.2008.12.014
  15. Boland, D. J., Brophy, J. J. and House, P. N. 1991. Eucalyptus leaf oils: use, chemistry, distillation and marketing. pp. 6. Inkata Press, Melbourne, Australia.
  16. Harborne, J. B. and Baxter, H. 2001. Chemical dictionary of economic plants. John Wiley & Sons Ltd. UK
  17. Juteau, F., Masotti, V., Bessiere, J. M., Dherbomez, M. and Viano, J. 2002. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73, 532-535. https://doi.org/10.1016/S0367-326X(02)00175-2
  18. Tirillini, B., Velasquez, E. R. and Pellegrino, R. 1996. Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med. 62, 372-373. https://doi.org/10.1055/s-2006-957911
  19. Shulgin, A. T., Sargent, T. and Naranjo, C. 1967. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. Psychopharmacol. Bull. 4, 13.
  20. Kohzaki, K., Gomi, K., Yamasaki-Kokudo, Y., Ozawa, R., Takabayashi, J. and Akimitsu, K. 2009. Characterization of a sabinene synthase gene from rough lemon (Citrus jambhiri). J. Plant Physiol. 166, 1700-1704. https://doi.org/10.1016/j.jplph.2009.04.003
  21. Ratnam, K. V., Bhakshu, L. M. and Raju, R. V. 2015. Phytochemical composition and In vitro antimicrobial activity of essential oil of Piper hymenophyllum Miq.: A rare wild betel. Int. J. Pharmacognosy Phytochem. Res. 7, 68-71.
  22. Peana, A. T. and Moretti, M. D. 2002. Pharmacological activities and applications of Salvia sclarea and Salvia desoleana essential oils. Stud. Nat. Prod. Chem. 26, 391-423.