DOI QR코드

DOI QR Code

생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향

Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion

  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 이명은 (경남과학기술대학교 환경공학과) ;
  • 서선철 (용진환경) ;
  • 안용태 (경남과학기술대학교 에너지공학과)
  • Chung, Jae-Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Myoung-Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Seo, Sun-Chul (Wastewater Treatment Department, Yongjin Environment Co. Ltd) ;
  • Ahn, Yongtae (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
  • 투고 : 2018.12.11
  • 심사 : 2018.12.18
  • 발행 : 2018.12.30

초록

혐기성소화(AD)는 폐활성슬러지의 유기물함량을 바이오가스로 전환할 수 있는 가장 널리 이용되는 공정 중 하나이다. 그러나 현재 전통적인 혐기성소화에 의한 실제 메탄수율은 이론적인 최대 메탄수율에 미치지 못하기 때문에 메탄수율을 높일 수 있는 방안의 지속적인 연구가 필요하다. 따라서 본 연구에서는 폐활성슬러지로부터 메탄수율을 높이기 위해 생물전기화학 혐기성소화조를 이용하여 혐기성소화슬러지와 생슬러지의 혼합비율(3:7, 5:5)에 따른 메탄수율 및 유기물제거 효율에 미치는 영향에 관하였다. 그 결과 생물전기화학 혐기성소화 슬러지의 혼합비가 3:7과 비교하여 5:5일 때 가장 높은 메탄수율 294.2 mL $CH_4/L$(0.63배 증가)과 52.5%(7.5% 증가)로 유기물제거효율을 가지는 것으로 나타났으며 pH, 알칼리도와 VFAs의 농도도 안정적으로 유지되었다. 이러한 결과는 혐기성소화 슬러지의 혼합비의 증가는 생물전기화학 혐기성소화조의 안정적인 성능유지를 위해 효과적인 것으로 나타났다.

Anaerobic digestion (AD) is one of the most widely used process that can convert the organic fraction of waste activated sludge (WAS) into biogas. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. Bioelectrochemical, anaerobic digester was used to increase methane yield from waste activated sludge. The influence of anaerobic digestion sludge and raw sludge mixing ratio (3:7, 5:5) on methane yield and organic matter removal efficiency were explored. As a result, when the mixing ratio of bioelectrochemical anaerobic sludge was 5:5 compared with 3:7, the highest methane yields were 294.2 mL $CH_4/L$ (0.63 times increase) and 52.5% (7.5% increase), the bioelectrochemical anaerobic digester(5:5) was more stable in the pH, t otal alkalinity and VFAs, respectively. These results showed that the increase in the mixing ratio of anaerobic digestion sludge was found to be effective for maintaining the stable performance of bioelectrochemical anaerobic digester.

키워드

참고문헌

  1. Guo, X., Liu, J. and Xiao, B., "Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells", Int. J. hydrogen energy, 38(3), pp. 1342-1347. (2013). https://doi.org/10.1016/j.ijhydene.2012.11.087
  2. Speece, R.E., "Anaerobic Biotechnology and Odor/corrosion Control for Municipalities and Industries". Incorporated. Fields Publishing, (2008).
  3. Zhang, Y. and Angelidaki, I., "Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges," Water Res., 56, pp. 11-25. (2014). https://doi.org/10.1016/j.watres.2014.02.031
  4. Zhang, J., Zhang, Y., Quan, X., Chen, S. and Afzal, S., "Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions", Bioresour. Technol., 136, pp. 273-280. (2013). https://doi.org/10.1016/j.biortech.2013.02.103
  5. Cheng, S. and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," PNAS, 104 (47), pp. 18871-18873. (2007). https://doi.org/10.1073/pnas.0706379104
  6. Wang, A., Liu, W., Ren, N., Cheng, H. and Lee, D.-J., "Reduced internal resistance of microbial electrolysis cell as factor of configuration and stuffing with granular activated carbon," Int. J. Hydrogen Energy, 35(24), pp. 13448-13492. (2010).
  7. Feng, Q., Song, Y. and Jang, S., "Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature" , J. Korean Soc. Environ. Eng., 38(11), pp. 618-626, (2016). https://doi.org/10.4491/KSEE.2016.38.11.618
  8. Sasaki, K., Morita, M., Sasaki, D., Hirano, S., Matsumoto, N., Watanabe, A., Ohmura, N. and Igarashi, Y., "A bioelectrochemical reactor containing carbon fiber texiles enables efficient methane fermentation from garbage slurry," Bioresour. Technol., 102(13), pp. 837-6842. (2011).
  9. Tartakovsky, B., Mehta, P., Bourque, J. S. and Guiot, S. R.,"Electrolysis-enhanced anaerobic digestion of wastewater,"Bioresour. Technol., 102(10), pp. 5685-5691. (2011). https://doi.org/10.1016/j.biortech.2011.02.097
  10. Villano, M., Monaco, G., Aulenta, F. and Majone, M., Electrochemically assisted methane production in a biofilm reactor,"J. Power Sources, 196(22), pp. 9467-9472. (2011). https://doi.org/10.1016/j.jpowsour.2011.07.016
  11. Song, Y. C., Feng, Q. and Ahn, Y. T., "Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times," Energ. Fuel., 30(1). pp. 352-359. (2016).
  12. Feng, Q., Song, Y. C. and Bae, B. U., "Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature," Bioresour. Technol., 220, pp. 500-508. (2016). https://doi.org/10.1016/j.biortech.2016.08.085
  13. Xafenias, N. and Mapelli, V., "Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production". Int. J. Hydrogen Energy, 39, pp. 21864-21875. (2014). https://doi.org/10.1016/j.ijhydene.2014.05.038
  14. Yin, Q., Zhu, X., Zhan, Z., Bo, T., Yang, Y., Tao, Y., He, X., Li, D. and Yan, Z., "Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina", J. Environ. Sci. 42, pp. 210-214. (2016). https://doi.org/10.1016/j.jes.2015.07.006
  15. Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X. and Li, D., "A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor", Electrochem. Commun. 45, pp. 67-70. (2014) https://doi.org/10.1016/j.elecom.2014.05.026
  16. Lee, B., Park J., Shin, W., Tian, D. and Jun, H., "Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells", Bioresource Technology 234, pp. 273-280. (2017). https://doi.org/10.1016/j.biortech.2017.02.022
  17. Park, J., Lee, B., Tian, D. and Jun, H., "Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell", Bioresour. Technol. 247, pp. 226-233. (2018). https://doi.org/10.1016/j.biortech.2017.09.021
  18. Park, J., Tian, D., Lee, B. and Jun, H., "The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology)", J. Korean Soc. Environ. Eng., 38(4), pp. 201-209. (2016). https://doi.org/10.4491/KSEE.2016.38.4.201
  19. Anderson G.K and Yang G., "Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration" Water Environment Research. 64(1): pp. 53-59. (1992). https://doi.org/10.2175/WER.64.1.8
  20. Jain, S., Jain, S., Wolf, I. T., Lee, J. and Tong, Y. W., "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renew. Sust. Energ. Rev., 52, pp. 142-154. (2015). https://doi.org/10.1016/j.rser.2015.07.091
  21. Song, Y. C., Kwon, S. J. and Woo, J. H., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge," Water Res., 38(7), pp. 1653-1662. (2004). https://doi.org/10.1016/j.watres.2003.12.019
  22. Kim, D. H., Song, Y. C. and Feng, Q., "Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge," J. Korean Soc. Environ. Eng., 37(9), pp. 542-549. (2015). https://doi.org/10.4491/KSEE.2015.37.9.542
  23. Padilla-Gasca, E., Lopez-Lopez, A. and Gallardo-Valdez, J., "Evaluation of Stability Factors in the Anaerobic Treatment of Slaughterhouse Wastewater," J. Biorem. Biodegrad., 2(114), pp. 2155-6199. (2011).
  24. Feng, Q., Song, Y. C., Yoo, K., Lal, B., Kuppanan, N., Subudhi, S. and Choi, T. S., "Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment," J. Korean Soc. Environ. Eng., 38(6), pp. 279-290. (2016). https://doi.org/10.4491/KSEE.2016.38.6.279