DOI QR코드

DOI QR Code

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping

선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가

  • Oh, Jae Hong (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Jang, Yeong Jae (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Lee, Chang No (Dept. of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2018.11.22
  • Accepted : 2018.12.05
  • Published : 2018.12.31

Abstract

Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

최근 들어 운용비용이 저렴하고 신속한 데이터 획득 및 처리가 가능한 무인항공기(드론)를 이용한 측량 및 지도 제작이 활발히 진행되고 있으며, 그 활용도는 지형 변화분석, 시설물 모니터링, 농업, 임업 등 여러 분야로 확장되고 있다. 드론의 높은 활용도의 바탕에는 높은 공간 정확도의 획득이 가능하다는데 있으며, 관련하여 드론 기반 공간 정확도의 평가 결과가 여러 연구를 통해 보고되었다. 대부분의 연구는 잘 분포된 지상기준점을 활용하여 획득 가능한 정확도를 분석한 경우이며, 부분적으로 기준점의 개수의 변화에 따른 정확성을 평가한 경우가 있다. 본 연구에서는 도로, 관로, 철도 등 선형 대상지에 드론을 이용한 측량을 수행할 경우 획득 가능한 공간 정확성을 확인하기 위해, 기준점 배치를 여러 조합으로 나누어 정확성을 평가 해보았다. 선형 대상지를 따라 기준점의 편위 및 밀도에 따른 정확성을 평가하였고, 추가적으로 카메라 캘리브레이션의 영향, 횡중복 스트립 개수에 따른 정확성 또한 평가하였다. 실험 결과 기준점의 밀도에 비해 기준점 배치의 편위가 정확성에 더 큰 악영향을 주었으며, 미리 카메라 캘리브레이션을 수행하고 사용하는 것이 현장 셀프 캘리브레이션에 비해 기준점의 배치나 개수가 충분치 못한 경우에 오차를 줄일 수 있었다. 또한, 선형 방향으로의 스트립 수를 늘리는 것은 정확도 향상에 큰 도움이 되지 않았다.

Keywords

GCRHBD_2018_v36n6_565_f0001.png 이미지

Fig. 1. Number of image strips

GCRHBD_2018_v36n6_565_f0002.png 이미지

Fig. 2. GCPs bias cases (a) Case Bias1, (b) Case Bias1/2, (c) Case Bias6

GCRHBD_2018_v36n6_565_f0003.png 이미지

Fig. 3. GCPs density cases (a) Case Density1, (b) Case Density2

GCRHBD_2018_v36n6_565_f0004.png 이미지

Fig. 4. Test area and GNSS-surveyed point distribution

GCRHBD_2018_v36n6_565_f0005.png 이미지

Fig. 5. Error vectors at check points with no GCPs (a) on-the-fly calibration, (b) prior project calibration

GCRHBD_2018_v36n6_565_f0006.png 이미지

Fig. 6. Accuracy decrease for blocks [on-the-fly calibration] (a) horizontal errors (b) vertical errors

GCRHBD_2018_v36n6_565_f0007.png 이미지

Fig. 7. Accuracy decrease for blocks [prior project calibration] (a) horizontal errors (b) vertical errors

GCRHBD_2018_v36n6_565_f0008.png 이미지

Fig. 8. Errors as GCPs density increases [on-the-fly calibration]

GCRHBD_2018_v36n6_565_f0009.png 이미지

Fig. 9. Errors as GCPs density increases [prior project calibration]

Table 1. Specification of the drone and camera

GCRHBD_2018_v36n6_565_t0001.png 이미지

Table 2. Accuracies of bundle adjustments without GCPs

GCRHBD_2018_v36n6_565_t0002.png 이미지

Table 3. Accuracies of bundle adjustments with GCPs

GCRHBD_2018_v36n6_565_t0003.png 이미지

Table 4. Accuracies for different numbers of strips

GCRHBD_2018_v36n6_565_t0004.png 이미지

References

  1. Benassi, F., Dall'Asta, E., Diotri, F., Forlani, G., di Cella, U.M., Roncella, R., and Santise, M. (2017), Testing accuracy and repeatability of UAV blocks oriented with GNSS-supported aerial triangulation, Remote Sensing, Vol. 9, No. 2, pp. 172-194. https://doi.org/10.3390/rs9020172
  2. Colomina, I. and Molina, P. (2014), Unmanned aerial systems for photogrammetry and remote sensing: A review, ISPRS J. Photogramm. Remote Sens, Vol. 92, pp. 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  3. GIM International (2018), UAV technology in action to survey high-speed rail corridor, GIM International, https://www.gim-international.com/content/article/uavtechnology-in-action-to-survey-high-speed-rail-corridor (last date accessed: 13 Nov 2018).
  4. Martinez-Carricondo, P., Aguera-Vega, F., Carvajal-Ramirez, F., Mesas-Carrascosa, F., Garcia-Ferrer, A., and Perez-Porras, F. (2018), Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points, International Journal of Applied Earth Observation and Geoinformation, Vol. 72, pp. 1-10. https://doi.org/10.1016/j.jag.2018.05.015
  5. Kim, D.I., Song, Y.S., Kim, G., and Kim, C.W. (2014), A study on the application of UAV for Korean land monitoring, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, pp. 29-38. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.1.29
  6. Oh, J.H., Eo, Y.D., and Lee, C.N. (2006), A photogrammetric network and object field design for efficient self-calibration of non-metric digital cameras, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 24, No. 3, pp. 281-288. (in Korean with English abstract)
  7. Park, C.H., Choi, K., and Lee, I. (2016), Lane extraction through UAV mapping and its accuracy assessment, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 11-19. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.11
  8. Santise, M., Fornari, M., Forlani, G., and Roncella, R. (2014), Evaluation of DEM generation accuracy from UAS imagery, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-5, pp. 529-536. https://doi.org/10.5194/isprsarchives-XL-5-529-2014
  9. SenseFly. (2017), Drones vs traditional instruments: corridor mapping in Turkey, SenseFly, https://www.sensefly.com/app/uploads/2017/11/drone_vs_traditional_instruments_corridor_mapping_turkey.pdf (last date accessed: 13 Nov 2018).
  10. Smith, I. (2015), Mapping 1,000 km of highway with a drone, DroneDeploy, https://blog.dronedeploy.com/mapping-1-000-km-of-highway-with-a-drone-a1062d7fc531 (last date accessed: 13 Nov 2018).
  11. Zhou, Y., Rupnik, E., Faure, P-H., and Pierrot-Deseilligny, M. (2018), GNSS-assisted accurate corridor mapping with small UAV, Conference Francaise de Photogrammetrie et Teledetectioin, 25-28 June 2018, Marne-la-Vallee, France.

Cited by

  1. 노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가 vol.17, pp.12, 2018, https://doi.org/10.14400/jdc.2019.17.12.191