DOI QR코드

DOI QR Code

Basic Analysis of Metabolic Parameters by using Metabolic Profile Test (MPT) for Improvement Breeding in Korean Native Cow

한우의 번식률 개선을 위한 영양대사물질 기초분석

  • Kang, Sung-Sik (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Ui-Hyung (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Seok-Dong (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Myeong-Suk (National Institute of Animal Science, Rural Development Administration) ;
  • Kwon, Eun-Ki (National Institute of Animal Science, Rural Development Administration) ;
  • Jang, Sun-Sik (National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Sang-Rae (National Institute of Animal Science, Rural Development Administration)
  • 강성식 (농촌진흥청 국립축산과학원) ;
  • 김의형 (농촌진흥청 국립축산과학원) ;
  • 이석동 (농촌진흥청 국립축산과학원) ;
  • 이명숙 (농촌진흥청 국립축산과학원) ;
  • 권응기 (농촌진흥청 국립축산과학원) ;
  • 장선식 (농촌진흥청 국립축산과학원) ;
  • 조상래 (농촌진흥청 국립축산과학원)
  • Received : 2018.11.29
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

The aim of the present study was to identify the metabolic changes that have occurred in Hanwoo Native Cow. Analysis of serum metabolites was carried out to investigate relationship of pregnancy rate and feeding systems. Totally, 281 cows were used for grazing and barn feeding. Grazing was carried out for 5 months in the pasture. In barn feeding, concentrate 3.0 Kg(TDN 68%, CP 14%) and rice straw 6 kg(TDN 50%, CP 6.5%) were fed. Artificial insemination(AI) carried out by timed AI procedure. The level of glucose(mg/dl), cholesterol(mg/mL), BUN(mg/dl), AST(U/l), ALT(U/l), and NEFA(uEq/l) were analyzed. In Table 1, barn feeding with 120% group was showed high Cholesterol and BUN levels compared those with 80% feeding group(p<0.05). In Table 2, 60 pregnant cows in grazing herd showed low Cholesterol, AST and NEFA levels compared to 43 non-pregnant cows($149.8{\pm}4.9$, $99.1{\pm}2.6$, $326.7{\pm}15.7$ vs. $165.9{\pm}4.6$, $108.9{\pm}3.2$, $419.2{\pm}32.8$, respectively, p<0.05). In Table 3, 126 grazing feeding cows showed high Glucose, Cholesterol, AST, ALT, and NEFA levels compared to 22 barn feeding cows($84.8{\pm}1.3$, $142.5{\pm}2.5$, $97.7{\pm}2.3$, $34.3{\pm}0.5$, $317.8{\pm}13.6$ vs. $56.0{\pm}1.3$, $128.9{\pm}4.6$, $80.9{\pm}2.0$, $27.1{\pm}0.9$, $160.2{\pm}18.9$, respectively, p<0.05). Further study needed to obtain more accurate level of metabolites in serum for pregnant and non-pregnant cows.

본 연구는 한우 번식우에 있어서 영양대사물질 분석을 통하여 영양수준을 구명하여 번식우의 수태율 개선을 위한 기초 자료로 활용하기 위해서 실시하였다. 번식우의 정확한 영양수준 분석을 위해서 사료급여량을 80%, 100%, 120%로 구분하여 사양관리를 실시한 결과 Cholesterol과 BUN 농도가 120% 급여구에서 유의적으로 높은 결과를 나타내었다(p<0.05). 방목우 중에서 임신우와 비임신우의 영양대사물질 수준 분석 결과, Cholesterol, AST, NEFA 농도가 임신우에 비해 비임신우에서 유의적으로 높은 결과를 보였다(p<0.05). 이와 같이 임신과 관련한 영양수준 분석에 Cholesterol, AST, NEFA 의 3가지 항목을 설정하는 것이 필요할 것으로 사료된다. 방목과 사사 사육에 대한 결과 분석에서 Glucose 농도는 방목우 84.8, 비방 목우 56.0 mg/dl 으로서 방목우에서 유의적으로 높은 결과를 보였고(p<0.05), Cholesterol 수준은 방목우에서 142.5 mg/dl로서 사사 사육 128.9 mg/dl 보다 유의적으로 높았으며(p<0.05), ALT(34.4 vs 27.1 IU/l)와 NEFA 농도(317.8 vs 160.2 ЧEq/l) 역시 방목우에서 유의적으로 높은 결과를 보였다(p<0.05). 결론적으로, 암소에 사료 급여시 Cholesterol, ALT, NEFA 수준을 낮출 수 있도록 하는 것이 한우 암소의 수태율을 높일 수 있을 것으로 사료된다.

Keywords

References

  1. Adams, R.S., Stout, W.L., Kradel, D.C., Guss Jr, S.B., Moser, B.L. and Jung, G.A. 1978. Use and limitations of profiles in assessing health or nutritional status of dairy herds. Journal of Dairy Science. 61:1671-1679. https://doi.org/10.3168/jds.S0022-0302(78)83781-3
  2. Blowey, R.W., Wood, D.W. and Davis, J.R. 1973. A nutritional monitoring system for dairy herds based on blood glucose, urea and albumin levels. Veterinary Record. 92:691-696. https://doi.org/10.1136/vr.92.26.691
  3. Butler, W.R. 2005. Relationships of negative energy balance with fertility. Journal of Advances in Dairy Research. 17:35-46.
  4. Cote, J.F. and Hoff, B. 1991. Interpretation of blood profiles in problem dairy herds. The Bovine Practitioner. 26:7-11.
  5. Day, M.L., Imakawa, K., Garcia-Winder, M., Zalesky, D.D., Schanbacher, B.D., Kittok, R.J. and Kinder, J.E. 1986. Influence of prepubertal ovariectomy and oestradiol replacement therapy on secretion of luteinising hormone before and after pubertal age in heifers. Domestic Animal Endocrinology. 3:17-25. https://doi.org/10.1016/0739-7240(86)90036-6
  6. Dunn, T.G. and Kaltenbach, C.C. 1980. Nutrition and the post-partum interval of the ewe, sow and cow. Part XIV: Biennial symposium on animal reproduction. Journal of Animal Science. 51. Supplement 2:29-39.
  7. Dunne, L.D., Diskin, M.G., Boland, M.P., O'Farrell, K.J. and Sreenan, J.M. 1999. The effect of pre- and post-insemination plane of nutrition on embryo survival in beef heifers. Animal Science. 69:411-417. https://doi.org/10.1017/S1357729800050980
  8. Gonzalez, F.D., Muino, R., Pereira, V., Campos, R. and Benedito J.L. 2011. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science. 12:251-255. https://doi.org/10.4142/jvs.2011.12.3.251
  9. Jones, G.M., Wildman, E.E., Troutt Jr, H.F., Lesch, T.N., Wagner, P.E., Boman, R.L. and Lanning, N.M. 1982. Metabolic profiles in dairy herds of different milk yields. Journal of Dairy Science. 65:683-688. https://doi.org/10.3168/jds.S0022-0302(82)82251-0
  10. Kaneko, J.J. 1989. Clinical Biochemistry of Domestic Animals. 4th edition. Academic Press San Diego. 932.
  11. Kida, K. 2002. The metabolic profile test; Its practicability in assessing feeding management and periparturient diseases in high yielding commercial dairy herds. Journal of Veterinary Medical Science. 64:557-563. https://doi.org/10.1292/jvms.64.557
  12. Kinder, J.E., Bergfelt, E.G., Wehrman, M.E., Peters, K.E. and Kojima, F.N. 1995. Endocrine basis for puberty in heifers and ewes. Journal of Reproduction and Fertility. Supplement. 49:393-407.
  13. Kronfeld, D.S., Donoghue, S., Copp, R.L., Sterns, F.M. and Engle, R.H. 1982. Nutritional status of dairy cows indicated by analysis of blood. Journal of Dairy Science. 65:1925-1933. https://doi.org/10.3168/jds.S0022-0302(82)82440-5
  14. Lee, A.J., Twardock, A.R. and Bubar, R.H. 1987. Blood metabolic profiles: Their use and relation to nutritional status of dairy cows. Journal of Dairy Science. 61:1652-1670.
  15. Lee, C.W., Kim, B.W., Ra, J.C., Shin, S.T., Kim, D., Kim, J.T. and Hong, S.I. 1993. Production increase of milk in dairy cow by metabolic profile test. The Korean Society of Veterinary Clinics. 10:65-94.
  16. Moran, C., Quirke, J.F. and Roche, J.F. 1989. Puberty in heifers: a review. Animal Reproduction Science. 18:167-182. https://doi.org/10.1016/0378-4320(89)90019-5
  17. Payne, J.M., Dew, S.M., Manston, R. and Faulks, M. 1970. The use of metabolic profile test in dairy herds. Veterinary Record. 87:150-158. https://doi.org/10.1136/vr.87.6.150
  18. Rajala-Schultz, P.J., Saville, W.J.A. Frazer, G.S. and Wittum, T.E. 2001. Association between milk urea nitrogen and fertility in ohio dairy cows. Journal of Dairy Science. 84:482-489. https://doi.org/10.3168/jds.S0022-0302(01)74498-0
  19. Richards, M.W., Spitzer, J.C. and Warner, M.B., 1986. Effect of varying levels of post-partum nutrition and body condition at calving on subsequent reproductive performance in beef cattle. Journal of Animal Science. 62:300-306. https://doi.org/10.2527/jas1986.622300x
  20. Rowland, G.J. 1984. Week-to-week variation in blood composition of dairy cows and its effect on interpretations of metabolic profile tests. British Veterinary Journal. 140:550-557. https://doi.org/10.1016/0007-1935(84)90006-X
  21. Selk, G.E., Wettemann, R.P., Lusby, K.S., Oltjen, J.W., Mobley, S.L., Rasby, R.J. and Garmendia, J.C. 1988. Relationships among weight change, body condition and reproductive performance of range beef cows. Journal of Animal Science. 66:3153-3159. https://doi.org/10.2527/jas1988.66123153x
  22. Shin E.K., Jeong, J.K., Choi, I.S., Kang, H.G., Hur, T.Y., Jung, Y.H. and Kim, I.H. 2015. Relationships among ketosis, serum metabolites, body condition, and reproductive outcomes in dairy cows. Theriogenology. 84:252-260. https://doi.org/10.1016/j.theriogenology.2015.03.014
  23. Sinclair, K.D., Revilla, R., Roche, J.F., Quintans, G., Sanz, A., Mackey, D.R. and Diskin, M.G., 2002. Ovulation of the first dominant follicle arising after day 21 postpartum in suckling beef cows. Journal of Animal Science. 75:115-126. https://doi.org/10.1017/S1357729800052899
  24. Tainturier, D., Braun J.P., Rico, A.G. and Thouvenot, J.P. 1984. Various in blood composition in dairy cows during pregnancy and after calving. Research in Veterinary Science. 37:129-131. https://doi.org/10.1016/S0034-5288(18)31892-7
  25. Van Hoeck, V., Leroy, J.L.M.R., Alvarez, M.A., Rizos, D., Gutierrez-Adan, A., Schnorbusch, K., Bols, P.E.J., Leese, H.J. and Sturmey, R.G. 2013. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: Mechanistic insights. Reproduction. 145:33-44. https://doi.org/10.1530/REP-12-0174
  26. Wathes, D.C., Fenwick, M., Chng, Z., Bourne, N., Llewellyn, S., Morris, D.G., Kenny, D., Murphy, J. and Fitzpatrick, R. 2007. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology. 68:232-241. https://doi.org/10.1016/j.theriogenology.2007.04.006