Acknowledgement
Supported by : Czech Science Foundation
References
- Andreozzi, L., Briccoli Bati, S., Fagone, M., Ranocchiai, G. and Zulli, F. (2014), "Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass", Constr. Build. Mater., 65, 1-13. https://doi.org/10.1016/j.conbuildmat.2014.04.003
- Belytschko, T., Tsay, C.S. and Liu, W.K. (1981), "A stabilization procedure for the quadrilateral plate element with one-point quadrature", J. Numer. Meth. Eng., 19(3), 405-419.
- Bonnans, J.F., Gilbert, J.C., Lemarechal, C. and Sagastizabal, C.A. (2006), Numerical Optimization: Theoretical and Practical Aspects, Springer Science & Business Media, Berlin, Germany.
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2004), "On the use of the Murakami's zig-zag function in the modeling of layered plates and shells", Comput. Struct., 82(7-8), 541-554. https://doi.org/10.1016/j.compstruc.2004.02.006
- Christensen, R. (1982), Theory of Viscoelasticity: An Introduction, Academic Press, New York, U.S.A.
- Duser, A., Jagota, A. and Bennison, S. (1999), "Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure", J. Eng. Mech., 125(4), 435-442. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(435)
- Eisentrager, J., Naumenko, K., Altenbach, H., and Koppe, H. (2015a), "Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels", J. Mech. Sci., 96-97, 163-171. https://doi.org/10.1016/j.ijmecsci.2015.03.012
- Eisentrager, J., Naumenko, K., Altenbach, H. and Meenen, J. (2015b), "A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory", Compos. Struct., 133, 265-277. https://doi.org/10.1016/j.compstruct.2015.07.049
- Flocker, F.W. and Dharani, L.R. (1998), "Modeling interply debonding in laminated architectural glass subject to low velocity impact", Struct. Eng. Mech., 6(5), 485-496. https://doi.org/10.12989/sem.1998.6.5.485
- Galuppi, L. and Royer-Carfagni, G. (2012), "The effective thickness of laminated glass plates", J. Mech. Mater. Struct., 7, 375-400. https://doi.org/10.2140/jomms.2012.7.375
- Galuppi, L. and Royer-Carfagni, G. (2013a), "The effective thickness of laminated glass: Inconsistency of the formulation in a proposal of EN-standards", Compos. Part B Eng., 55, 109-118. https://doi.org/10.1016/j.compositesb.2013.05.025
- Galuppi, L. and Royer-Carfagni, G. (2013b), "The design of laminated glass under time-dependent loading", J. Mech. Sci., 68, 67-75. https://doi.org/10.1016/j.ijmecsci.2012.12.019
- Huang, X., Liu, G., Liu, Q. and Bennison, S.J. (2014), "An experimental study on the flexural performance of laminated glass", Struct. Eng. Mech., 49(2), 261-271. https://doi.org/10.12989/sem.2014.49.2.261
- Krysl, P. (2015), Finite Element Modeling with Abaqus and Matlab for Thermal and Stress Analysis, Pressure Cooker Press, San Diego, California, U.S.A.
- Liang, Y., Lancaster, F. and Izzuddin, B.A. (2016), "Effective modelling of structural glass with laminated shell elements", Compos. Struct., 156, 47-62. https://doi.org/10.1016/j.compstruct.2016.02.077
- Mau, S.T. (1973), "A refined laminated plate theory", J. Appl. Mech., 40(2), 606-607. https://doi.org/10.1115/1.3423032
- Naumenko, K. and Eremeyev, V.A. (2014), "A layer-wise theory for laminated glass and photovoltaic panels", Compos. Struct., 112, 283-291. https://doi.org/10.1016/j.compstruct.2014.02.009
- Pica, A., Wood, R.D. and Hinton, E. (1980), "Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation", Comput. Struct., 11(3), 203-215. https://doi.org/10.1016/0045-7949(80)90160-1
- Reddy, J.N. and Robbins, J.D.H. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147-169. https://doi.org/10.1115/1.3111076
- Schmidt, J., Zemanova, A., Janda, T., Zeman, J. and Sejnoha, M. (2017), "Variationally-based effective dynamic thickness for laminated glass beams", Acta Polytech. CTU Proc. 13, Prague, September.
- Williams, M.L., Landel, R.F. and Ferry, J.D. (1955), "The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids", J. Am. Chem. Soc., 77(14), 3701-3707. https://doi.org/10.1021/ja01619a008
- Wu, P., Zhou, D., Liu, W., Lu, W. and Wan, L. (2016), "Three-dimensional elasticity solution of layered plates with viscoelastic interlayers", Mech. Time-Dep. Mater., 21(3), 307-329.
- Xenidis, H., Morfidis, K. and Papadopoulos, P.G. (2015), "A method for predicting approximate lateral deflections in thin glass plates", Struct. Eng. Mech., 53(1), 131-146. https://doi.org/10.12989/sem.2015.53.1.131
- Zemanova, A., Zeman, J., Sejnoha, M., Zemanova, A., Zeman, J. and Sejnoha, M. (2015), "Finite element model based on refined plate theories for laminated glass units", Lat. Am. J. Sol. Struct., 12(6), 1158-1181. https://doi.org/10.1590/1679-78251676
- Zemanova, A., Zeman, J. and Sejnoha, M. (2017), "Comparison of viscoelastic finite element models for laminated glass beams", J. Mech. Sci., 131-132, 380-395. https://doi.org/10.1016/j.ijmecsci.2017.05.035
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
- Zienkiewicz, O.C., Watson, M. and King, I.P. (1968), "A numerical method of visco-elastic stress analysis", J. Mech. Sci., 10(10), 807-827. https://doi.org/10.1016/0020-7403(68)90022-2
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, the Netherlands.
Cited by
- Experimental and Numerical Study of Viscoelastic Properties of Polymeric Interlayers Used for Laminated Glass: Determination of Material Parameters vol.12, pp.14, 2018, https://doi.org/10.3390/ma12142241