DOI QR코드

DOI QR Code

미계측 동해안 유역의 토사유출 규모의 평가에 관한 연구

Estimating magnitude of suspended sediment transport in ungauged east coastal zone

  • 이상은 (강원대학교 에너지 자원공학과) ;
  • 강상혁 (강원대학교 지구환경공학과)
  • Lee, Sangeun (Department of Energy and Mineral Resources Engineering, Kangwon National University) ;
  • Kang, Sanghyeok (Department of Earth Environmental System Engineering, Kangwon National University)
  • 투고 : 2017.10.14
  • 심사 : 2017.12.03
  • 발행 : 2018.02.28

초록

토사유출에 대한 자료는 극히 제한되어 있으며 이에 대한 관측지점 또한 대하천에 국한되어 있다. 더욱이 대하천 하류의 해안부근 유사량 자료는 전무한 실정이다. 본 연구는 지속적인 토사유입으로 인하여 그 면적이 줄어들고 있는 동해안의 석호인 유역면적 $8.2km^2$의 향호를 대상으로 토사량 유출량을 계산하여 유호성을 검증하였다. 그 결과 향호로 유입되는 비유사량은 약 $280t/km^2/yr$이었으며 유사전달률은 약 0.78이었다. 본 접근방법은 현재 육역화가 대부분 진행되어 있는 동해안 석호의 토사유입 과정을 유추하는데 유효한 자료가 될 것으로 기대한다.

Coastal sediment archives are used as indicators of changes on shore sediment production and fluvial sediment transport, but rivers crossing coastal plains may not be efficient conveyors of sediment to the coast. In some case there is a net loss of sediment in lower coastal plain reaches, so that sediment input from an upstream exceeds the sediment yield (SY) at the river mouth. The main source of sediment in coastal area is the load from land. In Korea, data on suspended SY are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate SY for ungauged coastal basins, using a soil erosion model and a sediment delivery ratio (SDR) model. For applying the SDR model, a basin specific parameter was validated on the basis of field data. The proposed relationships may be considered useful for predicting suspended SY in ungauged basins that have geologic, climatic and hydrologic conditions similar to the study area.

키워드

참고문헌

  1. Fernandez, C., Wu, J. Q., McCool, D. K., and StOckle, C. O. (2003). "Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD." Journal of Soil and Water Conservation, Vol. 58, No, 3, pp. 128-136.
  2. Ferro, V., and Porto, P. (2000). "Sediment delivery distribution (SEDD) model." Journal of Hydrologic Engineering, Vol. 5, No. 4, pp. 411-422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
  3. Fu, G., Chen, S., and McCool, D. K. (2006). "Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS." Soil and Tillage Research, Vol. 85, No. 1-2, pp. 38-49. https://doi.org/10.1016/j.still.2004.11.009
  4. Jain, M. K., and Kothyari, U. C. (2000). "Estimation of soil erosion and sediment yield using GIS." Hydrological Sciences Journal, Vol. 45, No. 5, pp. 771-786. https://doi.org/10.1080/02626660009492376
  5. Kamaludin, H, Lihan, T., Ali Rahman, Z., Mustapha, M. A., Idris, W. M., and Rahim, S. A. (2013). "Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY)." Hydrology and Earth System Sciences Discussions, Vol. 10, No. 4, pp. 4567-4596. https://doi.org/10.5194/hessd-10-4567-2013
  6. Kang, S. H. (2015). "GIS-based sediment transport in Asian monsoon region." Environmental Earth Sciences, Vol. 73, No. 1, pp. 221-230. https://doi.org/10.1007/s12665-014-3414-3
  7. Korea Institute of Construction Technology (KICT) (1992). The development of selection standard for calculation method of unit sediment yield in river. 89-WR-113 Research Paper (in Korean).
  8. Kothyari, U. C., and Jain, M. K. (1997). "Sediment yield estimation using GIS." Hydrological Sciences Journal, Vol. 46, No, 6, pp. 833-843.
  9. Lee, G. S., and Lee, K. H. (2006). "Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea." Hydrology and Earth System Sciences Discussions, Vol. 3, No. 1, pp. 135-157. https://doi.org/10.5194/hessd-3-135-2006
  10. Lee, S. E., and Kang, S. H. (2013)." Estimating the GIS-based soil loss and sediment delivery ratio to the sea for four major basins in South Korea." Water Science and Technology, Vol. 68, No. 1, pp. 124-133. https://doi.org/10.2166/wst.2013.194
  11. Lee, S. E., and Kang, S. H. (2014). "Geographic information systemcoupling sediment delivery distribution modeling based on observed data." Water Science and Technology, Vol. 70, No. 3, pp. 495-501. https://doi.org/10.2166/wst.2014.231
  12. Lu, X. X., and Siew, R. Y. (2005). "Water discharge and sediment flux changes in the lower Mekong River." Hydrology and Earth System Sciences Discussions, Vol. 2, No. 6, pp. 2287-2325. https://doi.org/10.5194/hessd-2-2287-2005
  13. Milliman, J. D., and Syvitski, P. M. (1992). "Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers." The Journal of Geology, Vol. 100, No. 5, pp. 525-544. https://doi.org/10.1086/629606
  14. Ministry of Land, Infrastructure and Transport (2014). WAter Management Information System (WAMIS), Korea (in Korean).
  15. Mutua, B. M., and Klik, A. (2006). "Estimating spatial sediment delivery ratio on a large rural catchment." Journal of Spatial Hydrology, Vol. 6, No. 1, pp. 64-80.
  16. National Academy of Agricultural Science (2014). Soil map, Korea (In Korean).
  17. Neibling, W. H., and Foster, G. R. (1997) Estimating deposition and sediment yield from overland flow processes. International Symposium on Urban Hydrology, Hydraulics, and Sediment Control Procs. University of Kentucky, Lexington.
  18. Pal, B., Samanta, S., and Pal, D. K. (2012). "Morphometric and hydrological analysis and mapping for Watut watershed using Remote Sensing and GIS techniques." International Journal of Advances in Engineering & Technology, Vol. 2, No. 1, pp. 357-368.
  19. Phillips, J. D. (1995). "Decoupling of sediment sources in large river basins; Effects of Scale on Interpretation and Management of Sediment and Water Quality." Proceedings a Boulder Symposium, July, IAHS publ. No. 226, pp. 11-16.
  20. Renard, K. G., Foster, G. R., Weesies, G. A., and Porter, J. P. (1997). "RUSLE: Revised Universal Soil Loss Equation." Journal of Soil and Water Conservation, Vol. 46, No. 1, pp. 30-33.
  21. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703, US Department of Agriculture: Washington, DC, USA.
  22. Rosati, J. D. (2005). "Concepts in sediment budgets." Journal of Coastal Research, Vol. 21, No. 2, pp. 307-322. https://doi.org/10.2112/02-475A.1
  23. Wischmeier, W. H., Johnson, C. B., and Cross, B. V. (1971). "A soil erodibility nomograph for farmland and construction sites." Journal of Soil and Water Conservation, Vol. 26, No. 5, pp. 26,189-193.
  24. Wischmeier, W. H., and Smith, D. D. (1978). "Rainfall energy and its relation to soil loss." Transactions, American Geophysical Union, Vol. 39, No. 2, pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  25. Wischmeier, W. H., and Smith, D. D. (1978). Predicting rainfall erosion losses. USDA Ag. Res Serv Handbook, Vol. 537, US Department of Agriculture, Washington, DC, USA.
  26. Yekta, A. H. A., Marsooli, R., and Soltana, F. (2010). "Suspended sediment estimation of Ekbatan Reservoir Sub Basin using Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Artificial Neural Networks (ANN), and Sediment Rating Curves (SRC)." River Flow, Dittrich, Koll, Aberle & Geisenhainer (eds), pp. 807-813.