DOI QR코드

DOI QR Code

소규모 하천의 시간단위 홍수예측을 위한 TFN 모형 적용성 검토

TFN model application for hourly flood prediction of small river

  • 성지연 (국토교통부 한강홍수통제소) ;
  • 허준행 (연세대학교 공과대학 토목환경공학과)
  • Sung, Ji Youn (Han River Flood Control Office, Ministry of Land, Infrastructure and Transport (MOLIT)) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2017.10.18
  • 심사 : 2017.12.01
  • 발행 : 2018.02.28

초록

시계열 데이터를 활용하는 모형은 신뢰할 수 있는 자료를 확보한 경우에는 모형 구축이 용이하고 예측 선행 시간 확보를 위해 신속한 모의가 가능한 장점 때문에 규모가 작은 하천의 홍수예측 모형으로 고려할 수 있다. 이 중 Transfer Function Noise (TFN) 모형은 이탈리아, 영국 등 해외에서는 1970년대부터 시간단위 자료를 이용한 하천유량 예측에 적용되었으나, 우리나라에서는 주로 일 단위 혹은 월 단위의 하천유량 모의에 적용되었다. 국내 수문 자료의 품질 향상으로 그동안 축적된 수문자료를 통해 시간단위 자료를 이용한 홍수예측 모형의 구축 기반이 갖추어졌다. 본 연구의 목적은 소규모 하천을 대상으로 외생변수의 반영이 가능하고 동적시스템과 오차항을 결합하여 예측 오차를 줄이는데 용이한 TFN 모형을 구축하고 그 적용성을 검토하는 것이다. 이를 위해 1시간 단위 자료를 이용하여 TFN 모형을 구축하였으며 구축된 모형을 이용한 홍수 예측 결과를 홍수예보 실무에 활용 중인 저류함수모형의 홍수 예측 결과와 비교하였다. 비교 결과 홍수사상에 따라 TFN 모형과 저류함수 모형이 각각 더 나은 결과를 보이는 사상이 있었으며, 실무에서 TFN 모형을 홍수예측 모형으로 활용할 수 있을 것으로 판단하였다.

The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.

키워드

참고문헌

  1. Anselmo, V., and Ubertini, L. (1979). "Transfer function-noise model applied to flow forecasting." Hydrological Sciences-Bulletin, Vol. 24, No. 3, pp. 353-359. https://doi.org/10.1080/02626667909491874
  2. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1976). Time series analysis: forecasting and control, Prentice-Hall International, Inc.
  3. Choi, S. Y., and Han, K. Y. (2011). "Comparison and analysis for performance of flood stage prediction regression model according to type of input rainfall." Korean Society of Hazard Mitigation, Vol. 11, No. 5, pp. 313-325. https://doi.org/10.9798/KOSHAM.2011.11.5.313
  4. Chung, G., Park, H. S., Sung, J. Y., and Kim, H. J. (2012). "Determination and evaluation of optimal parameters in storage function method using SCE-UA." Journal of Korea Water Resources Association, Vol. 45, No. 11, pp. 1169-1186. https://doi.org/10.3741/JKWRA.2012.45.11.1169
  5. Hipel, K. W. (1994). Developments in water science: time series modelling of water resources and environmental systems, Elsevier.
  6. Jeong, D. K., and Lee, B. H. (2010). "Development of urban flood water level forecasting model using regression method." Journal of Korea Water Resources Association, Vol. 30, No. 4-B, pp. 347-359.
  7. Kang, K. S., and Heo, J. H. (2006). "Comparative study on method of stochastic modeling in Han river basin." Proceedings 2006 Korea Water Rersources Conference, Jeju, Korea, pp. 669-673.
  8. Kimura, T. (1961). The flood runoff analysis method by the storage function model. The Public Works. Research Institute, Ministry of Construction.
  9. Kumar, A. P. S., Sudheer, K. P., Jain, S. K., and Agarwal P. K. (2005). "Rainfall-runoff modeling using artificial neural networks: comparison of network types." Hydrological Processes, Vol. 19, No. 6, pp. 1277-1291. https://doi.org/10.1002/hyp.5581
  10. Lohani, A. K., Goel, N. K., and Bhatia, K. K. S. (2011). "Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modeling under different input domains." Hydrological Processes, Vol. 25, No. 2, pp. 175-193. https://doi.org/10.1002/hyp.7831
  11. Park, J., Kwon, J. H, Kim, T., and Heo, J. H. (2014). "Future inflow simulation considering the uncertainties of TFN model and GCMs on Chungju dam basin." Journal of Water Resources Association, Vol. 47, No. 2, pp. 135-143. https://doi.org/10.3741/JKWRA.2014.47.2.135
  12. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  13. Salas, J. D., Delleur, J. W., YevJevich, V., and Lane, W. L.(1980). Applied modeling of hydrologic time series, Water Resources Publications, Littleton, Colorado, pp. 461-473.
  14. Shamseldin, A. Y. (2005). River basin modelling for flood risk mitigation.
  15. Song, J. H., Chung, G., and Kang, M. S. (2014). "An introduction of a parameter optimization method for watershed models using MATLAB." Rural Resources, Vol. 56, No. 2, pp. 16-25 (In Korean).
  16. Song, J. H., Song, I., Kim, J. T., and Kang, M. S. (2015). "Simulation of agricultural water supply considering yearly variation of irrigation efficiency." Journal of Korea Water Resources Association, Vol. 48, No. 6 pp. 425-438 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.6.425
  17. Tokar, A. S., and Johnson, A. (1999). "Rainfall-runoff modeling using artificial neural networks. Journal of Hydrology, Vol. 4, No. 3, pp. 232-239.
  18. Tokar, A. S., and Markus, M. (2000). "Precipitation-runoff modeling using artificial neural networks and conceptual models." Journal of Hydrology, Vol. 5, No. 2, pp. 156-161.
  19. Wood, E. F., and O'connell, P. E. (1985). Hydrological forecasting. A Wiley-Interscience Publication, pp. 505-558.
  20. Yoon, K., and Kim, T. (2003). "Development of the multiple regression runoff model using rainfall forecast data by radar." Proceedings 2003 The Korean Society of Civil Engineers Conference, pp. 2187-2198.
  21. Young, P. (1984). Recursive estimation and time series analysis. Springer, Berlin, pp. 198-228.