References
- Artar, M. (2016a), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., Int. J., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733
- Artar, M. (2016b), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., Int. J., 22(3), 521-535. https://doi.org/10.12989/scs.2016.22.3.521
- Aydogdu, I., Efe, P., Yetkin, M. and Akin, A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., Int. J., 62(3), 259-272. https://doi.org/10.12989/sem.2017.62.3.259
- Cerny, V. (1985), "Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm", J. Optim. Theory Appl., 45(1), 41-51. https://doi.org/10.1007/BF00940812
- Das, M., Rudrapati, R., Ghosh, N. and Rathod, L. (2016), "Input Parameters optimization in EDM Process using RSM and Jaya Algorithm", Int. J. Current Eng. Technol., 6, 109-112.
- Dede, T. (2013), "Optimum design of grillage structures to LRFDAISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48(5), 955-964. https://doi.org/10.1007/s00158-013-0936-3
- Dorigo, M. (1991), "Ant Colony Optimization, New Optimization Techniques in Engineering", by Onwubolu, G.C. and Babu, B.V., Springer-Verlag Berlin Heidelberg, pp. 101-117.
- Erdal, F. (2007), "Optimum design of grillage system using harmony search algorithm", M.S. Thesis; Middle East Technical University, Ankara, Turkey.
- Erdal, F. and Saka, M.P. (2008), "Effect of beam spacing in the harmony search based optimum design of grillages", Asian J. Civil Eng., 9(3), 215-228.
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
- Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., Int. J., 24(1), 129-140. https://doi.org/10.12989/scs.2017.24.1.129
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, New York, USA.
- Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, USA.
- Kaveh, A. and Abadi, A.S.M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
- Kaveh, A. and Mahdavi, V.R. (2015), "Colliding bodies optimization for size and topology optimization of truss structures", Struct. Eng. Mech., Int. J., 53(5), 847-865. https://doi.org/10.12989/sem.2015.53.5.847
- Kaveh, A. and Talatahari, S. (2010b), "A novel heuristic optimization method: Charged system search", ActaMechanica, 213(3), 267-289.
- Kaveh, A. and Talatahari, S. (2010a), "Charged system search for optimum grillage design using the LRFD-AISC code", J. Construct. Steel Res., 66(6), 767-771. https://doi.org/10.1016/j.jcsr.2010.01.007
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Vol. 4 (held in Perth), pp. 1942-1948. Piscataway: IEEE Service Center.
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Kurada, R.R. and Kanadam, K.P. (2016), "Automatic Unsupervised Data Classification Using Jaya Evolutionary Algorithm", Adv. Computat. Intel.: Int. J. (ACII), 3(2), 35-42.
- LRFD-AISC, Manual of Steel Construction (1999), "Load and resistance factor design. Metric conversion of the second edition", Volume 1-2, AISC, Chicago, IL, USA.
- Phulambrikar, S. (2016), "Solving combined economic emission dispatch solution using jaya optimization algorithm approach", Int. Res. J. Eng. Technol. (IRJET), 3(11), 501-512.
- Ramanauskas, M., Sesok, D., Belevicius, R., Kurilovas, E. and Valentinavicius, S. (2017), "Genetic algorithm with modified crossover for grillage optimization", Int. J. Comput. Commun. Control, 12(3), 393-401. https://doi.org/10.15837/ijccc.2017.3.2813
- Rao, R.V. and Rai, D.P. (2017a), "Optimisation of welding processes using quasi-oppositional-based Jaya algorithm", J. Experim. Theor. Artif. Intel., 29, 1099-1117. https://doi.org/10.1080/0952813X.2017.1309692
- Rao, R.V. and Rai, D.P. (2017b), "Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm", J. Mech. Sci. Technol., 31(5), 2513-2522. https://doi.org/10.1007/s12206-017-0449-x
- Rao, R.V., Rai, D.P., Ramkumar, J. and Balic, J. (2016), "A new multi-objective Jaya algorithm for optimization of modern machining processes", Adv. Production Eng. Manage., 11(4), 271-286. https://doi.org/10.14743/apem2016.4.226
- Rao, R.V., Rai, D.P. and Balic, J. (2017), "A multi-objective algorithm for optimization of modern machining processes", Eng. Appl. Artif. Intel., 61, 103-125. https://doi.org/10.1016/j.engappai.2017.03.001
- Saka, M.P. and Erdal, F. (2009), "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC", Struct. Multidiscipl. Optimiz., 38(1), 25-41. https://doi.org/10.1007/s00158-008-0263-2
- Saka, M.P., Daloglu, A. and Malhasc, F. (2000), "Optimum spacing design of grillage systems using a genetic algorithm", Adv. Eng. Software, 31(11), 863-873. https://doi.org/10.1016/S0965-9978(00)00048-X
- Sesok, D., Belevicius, R. Kaceniauskas, A. and Mockus, J. (2010a), "Application of GRID computing for optimization of grillages", Mechanika, 2(82), 63-69.
- Sesok, D., Mockus, J., Belevicius, R. and Kaceniauskas, A. (2010b), "Global optimization of grillages using simulated annealing and high performance computing", J. Civil Eng. Manage., 16(1), 95-101. https://doi.org/10.3846/jcem.2010.09
- Topal, U. and O zturk, H.T. (2014),"Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech., Int. J., 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755
- Warid, W., Hizam, H., Mariun, N. and Abdul-Wahab, N.I. (2016), "Optimal power flow using the jaya algorithm", Energies, 9(678), 1-18.
- Zhang, Y., Yang, X., Cattani, C., Rao, R.V., Wang, S. and Phillips, P. (2016), "Tea category identification using a novel fractional fourier entropy and jaya algorithm", Entropy, 18(77), 1-17. https://doi.org/10.3390/e18020001
- Zhang, Z., Pan, J., Fu, J., Singh, H.K., Pi, Y.L., Wu, J. and Ra, R. (2017), "Optimization of long span portal frames using spatially distributed surrogates", Steel Compos. Struct., Int. J., 24(2), 227-237.
- Zula, T., Kravanja, S. and Klansek, U. (2016), "MINLP optimization of a composite I beam floor system", Steel Compos. Struct., Int. J., 22(5), 1163-1192. https://doi.org/10.12989/scs.2016.22.5.1163
Cited by
- Optimization of Headways and Departure Times in Urban Bus Networks: A Case Study of Çorlu, Turkey vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/7094504
- Multiobjective Construction Optimization Model Based on Quantum Genetic Algorithm vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/5153082
- Implementing Fuzzy TOPSIS on Project Risk Variable Ranking vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/9283409
- Application of Jaya algorithm-trained artificial neural networks for prediction of energy use in the nation of Turkey vol.14, pp.5, 2018, https://doi.org/10.1080/15567249.2019.1653405
- Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.747
- Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.409
- Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.853
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795