DOI QR코드

DOI QR Code

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan (Key Lab. of Power Electron. and Electr. Drive, Inst. of Electrical Eng., Chinese Academy of Sciences) ;
  • Liao, Chenglin (Key Lab. of Power Electron. and Electr. Drive, Inst. of Electrical Eng., Chinese Academy of Sciences) ;
  • Wang, Lifang (Key Lab. of Power Electron. and Electr. Drive, Inst. of Electrical Eng., Chinese Academy of Sciences)
  • Received : 2016.08.29
  • Accepted : 2017.08.08
  • Published : 2018.01.20

Abstract

An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Keywords

References

  1. S. Y. Hui, "Planar wireless charging technology for portable electronic products and Qi," in Proc. IEEE, Vol. 101, No. 6, pp. 1290-1301, Jun. 2013. https://doi.org/10.1109/JPROC.2013.2246531
  2. U. K. Madawala and D. J. Thrimawithana, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4789-4796, Oct. 2011. https://doi.org/10.1109/TIE.2011.2114312
  3. P. Si, A.P. Hu, S. Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomed. Circuits Syst., Vol. 2, No. 1, pp. 22-29, Mar. 2008. https://doi.org/10.1109/TBCAS.2008.918284
  4. J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. Jeon, and D. Cho, “Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1179-1192, Mar. 2014. https://doi.org/10.1109/TIE.2013.2258294
  5. Q. Li and Y.C. Liang, “An inductive power transfer system with a high-Q resonant tank for mobile device charging,” IEEE Trans. Power Electron., Vol. 30, No. 11, pp. 6203-6212, Nov. 2015. https://doi.org/10.1109/TPEL.2015.2424678
  6. C. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1308-1314, Oct. 2005. https://doi.org/10.1109/TIE.2005.855672
  7. J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal design of ICPT systems applied to electric vehicle battery charge,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2140-2149, Jun. 2009. https://doi.org/10.1109/TIE.2009.2015359
  8. D. Ahn and S. Hong, “Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2602-2613, Jul. 2013. https://doi.org/10.1109/TIE.2012.2196902
  9. T. Beh, M. Kato, T. Imura, S. Oh, and Y. Hori, “Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling,” IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3689-3698, Sep. 2013. https://doi.org/10.1109/TIE.2012.2206337
  10. S. Iguchi, P. Yeon, H. Fuketa, K. Ishida, T. Sakurai, and M. Takamiya, "Wireless power transfer with zero-phasedifference capacitance control," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol.62, No. 4, pp. 938-947, Apr. 2015. https://doi.org/10.1109/TCSI.2015.2388832
  11. W. Zhong and S.Y.R. Hui, “Auxiliary circuits for power flow control in multifrequency wireless power transfer systems with multiple receivers,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5902-5910, Oct. 2015. https://doi.org/10.1109/TPEL.2014.2373381
  12. J. Lee, B. Lee, S. Lee, and K. Yi, "A study on the control of output current to respond to the load changes of the wireless power transfer," IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-4, 2015.
  13. J.T. Boys, C.-Y. Huang, and G.A. Covic, "Single-phase unity power-factor inductive power transfer system," IEEE Power Electronics Specialists Conference, pp. 3701-3706, 2008.
  14. H. L. Li, A. P. Hu, G. A. Covic, and C. Tang, "A new primary power regulation method for contactless power transfer," IEEE International Conference on Industrial Technology, pp. 1-5, 2009.
  15. N.Y. Kim, K.Y. Kim, J. Choi, and C. Kim, “Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer,” Electronics Lett., Vol. 48, No. 8, pp. 452-454, Apr. 2012. https://doi.org/10.1049/el.2012.0580
  16. A. P. Hu and H. S, "Improved power flow control for contactless moving sensor applications," IEEE Power Electronics Lett., Vol.2, pp. 135-138, Dec. 2004. https://doi.org/10.1109/LPEL.2004.841311
  17. G . Chen, Y. Sun, X. Dai, and Z. Wang, "On piecewise control method of Contactless Power Transmission system," in Proceedings of the Control Conference, pp. 72-75, 2008.
  18. T. Diekhans and R.W. De Doncker, “A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load,” IEEE Trans. Power Electron., Vol. 30, No. 11, pp. 6320-6328, Nov. 2015. https://doi.org/10.1109/TPEL.2015.2393912
  19. J. Yin, D. Lin, C. K. Lee, and S. Y. R. Hui, "Load monitoring and output power control of a wireless power transfer system without any wireless communication feedback," in Proc. IEEE Energy Convers. Congr. Expo., pp. 4934-4939, 2013.
  20. U. K. Madawala, M. Neath, and D. J. Thrimawithana, “A power-frequency controller for bidirectional inductive power transfer system,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 310-317, Jan. 2013. https://doi.org/10.1109/TIE.2011.2174537
  21. G. R. Nagendra, L. Chen, G. A. Covic, and J. T. Boys, "Detection of EVs on IPT highways," in Proc. 29th Annu. IEEE Applied Power Electronics Conference and Exposition, pp. 1604-1611, 2014.
  22. U. K. Madawala and D. J. Thrimawithana, "A single controller for inductive power transfer systems," in Proc. IEEE Ind. Electron. Conf., pp. 109-113, 2009.
  23. Z. H. Wang, Y. Li, Y. Sun, C. Tang, and X. Lv, "Load Detection Model of Voltage-Fed Inductive Power Transfer System," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5233-5243, Nov. 2013 https://doi.org/10.1109/TPEL.2013.2243756
  24. Y. P. Su, L. Xun, and S. Y. R. Hui, "Mutual inductance calculation of movable planar coils on parallel surfaces," in IEEE Power Electronics Specialists Conference, pp. 3475-3481, 2008.
  25. J. Yin, D. Lin, C. Lee, S.Y.R. Hui, “A systematic approach for load monitoring and power control in wireless power transfer systems without any direct output measurement,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1657-1667, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2317183
  26. J. L. Villa, J. F. Osorio, and A. Llombart, “High- misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 945-951, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161055
  27. T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula,” IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4746-4752, Oct. 2011. https://doi.org/10.1109/TIE.2011.2112317
  28. Y. P. Su, X. Liu, and S. Y. R. Hui, “Mutual inductance calculation of movable planar coils on parallel surfaces,” IEEE Trans. Ind. Electron., Vol. 24, No. 4, pp. 1115-1124, Apr. 2009.
  29. J. J. Casanova, Z. Low, and J. Lin, “A loosely coupled planar wireless power system for multiple receivers,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3060-3068, Aug. 2009. https://doi.org/10.1109/TIE.2009.2023633
  30. L. Chen, S. Liu, Y. Zhou, and T. Cui, “An optimizable circuit structure for high-efficiency wireless power transfer,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 339-349, Jan. 2013. https://doi.org/10.1109/TIE.2011.2179275
  31. M. Pinuela, D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, “Maximizing DC-to-load efficiency for inductive power transfer,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2437-2447, May. 2013. https://doi.org/10.1109/TPEL.2012.2215887
  32. M. Fu, T. Zhang, C. Ma, and X. Zhu, “Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems,” IEEE Trans. Microw. Theory Techn., Vol. 63, No. 3, pp. 801-812, Mar. 2015. https://doi.org/10.1109/TMTT.2015.2398422