DOI QR코드

DOI QR Code

Design and Implementation of a Universal System Control Strategy Applicable to VSC-HVDC Systems

  • Zhao, Yue (National Key Laboratory of Power Systems in Shenzhen, Graduate School at Shenzhen, Tsinghua University) ;
  • Shi, Li-bao (National Key Laboratory of Power Systems in Shenzhen, Graduate School at Shenzhen, Tsinghua University) ;
  • Ni, Yi-xin (National Key Laboratory of Power Systems in Shenzhen, Graduate School at Shenzhen, Tsinghua University) ;
  • Xu, Zheng (National Key Laboratory of Power Systems in Shenzhen, Graduate School at Shenzhen, Tsinghua University) ;
  • Yao, Liang-zhong (China Electric Power Research Institute)
  • Received : 2017.01.01
  • Accepted : 2017.09.19
  • Published : 2018.01.20

Abstract

This paper proposes a universal system control strategy for voltage source converter (VSC) based high voltage direct current (HVDC) systems. The framework of the designed control strategy consists of five layer structures considering the topology and control characteristics of the VSC-HVDC system. The control commands sent from the topmost layer can be transmitted to the next layer based on the existing communication system. When the commands are sent to each substation, the following transmission of commands between the four lower layers are realized using the internal communication system while ignoring the communication delay. This hierarchical control strategy can be easily applied to any VSC-HVDC system with any topology. Furthermore, an integrated controller for each converter is designed and implemented considering all of the possible operating states. The modular-designed integrated controller makes it quite easy to extend its operating states if necessary, and it is available for any kind of VSC. A detailed model of a VSC-HVDC system containing a DC hub is built in the PSCAD/EMTDC environment. Simulation results based on three operating conditions (the start-up process, the voltage margin control method and the master-slave control method) demonstrate the flexibility and validity of the proposed control strategy.

Keywords

References

  1. E. Kontos, R. T. Pinto, S. Rodrigues, and P. Bauer, “Impact of HVDC transmission system topology on multiterminal DC network faults,” IEEE Trans. Power Del., Vol. 30, No. 2, pp. 844-852, Apr. 2015. https://doi.org/10.1109/TPWRD.2014.2357056
  2. W. Wang, A. Beddard, M. Barnes, and O. Marjanovic, “Analysis of active power control for VSC-HVDC,” IEEE Trans. Power Del., Vol. 29, No. 4, pp. 1978-1988, Aug. 2014. https://doi.org/10.1109/TPWRD.2014.2322498
  3. S. Debnath and M. Saeedifard, “A new hybrid modular multilevel converter for grid connection of large wind turbines,” IEEE Trans. Sustain. Energy, Vol. 4, No. 4, pp. 1051-1064, Oct. 2013. https://doi.org/10.1109/TSTE.2013.2266280
  4. S. Liu, Z. Xu, W. Hua, G. Tang, and Y. Xue, “Electromechanical transient modeling of modular multilevel converter based multi-terminal HVDC Systems,” IEEE Trans. Power Syst., Vol. 29, No. 1, pp. 72-83, Jan. 2014. https://doi.org/10.1109/TPWRS.2013.2278402
  5. S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: A review,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 37-53, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2309937
  6. D. Jovcic, M. Taherbaneh, J. P. Taisne, and S. Nguefeu, “Offshore DC grids as an interconnection of radial systems: Protection and control aspects,” IEEE Trans. Smart Grid, Vol. 6, No. 2, pp. 903-910, Mar. 2015. https://doi.org/10.1109/TSG.2014.2365542
  7. F. Xu, Z. Xu, H. Zheng, G. Tang, and Y. Xue, “A tripole HVDC system based on modular multilevel converters,” IEEE Trans. Power Del., Vol. 29, No. 4, pp. 1683-1691, Aug. 2014. https://doi.org/10.1109/TPWRD.2014.2315640
  8. A. Madariaga, J. L. Martin, I. Zamora, I. M. D. Alegria, and S. Ceballos, "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Vol. 24, pp. 32-44, Aug. 2013. https://doi.org/10.1016/j.rser.2013.03.039
  9. I. A. Gowaid, G. P. Adam, A. M. Massoud, S. Ahmed, D. Holliday, and B. W. Williams, “Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 108-123, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2306453
  10. R. Li, J. E. Fletcher, L. Xu, D. Holliday, and B. W. Williams, “A hybrid modular multilevel converter with novel three-level cells for DC fault blocking capability,” IEEE Trans. Power Del., Vol. 30, No. 4, pp. 2017-2026, Aug. 2015. https://doi.org/10.1109/TPWRD.2015.2423258
  11. G. P. Adam and B. W. Williams, “Half- and Full- bridge modular multilevel converter models for simulations of full-scale HVDC links and multiterminal DC grids,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, No. 4, pp. 1089-1108, Dec. 2014. https://doi.org/10.1109/JESTPE.2014.2315833
  12. B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, “Analysis of the phase-shifted carrier modulation for modular multilevel converters,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 297-310, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2299802
  13. C. Petino, M. Heidemann, D. Eichhoff, M. Stumpe, E. Spahic, and F. Schettler, “Application of multilevel full bridge converters in HVDC multiterminal systems,” IET Power Electron., Vol. 9, No. 2, pp. 297-304, Feb. 2016. https://doi.org/10.1049/iet-pel.2015.0515
  14. H. Rao, “Architecture of Nan’ao multi-terminal VSC-HVDC system and its multi-functional control,” CSEE Journal of Power and Energy Systems, Vol. 1, No. 1, pp. 9-18, Mar. 2015.
  15. T. Luth, M. M. C. Merlin, T. C. Green, F. Hassan, and C. D. Barker, “High-frequency operation of a DC/AC/DC system for HVDC applications,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4107-4115, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2292614
  16. G. J. Kish, M. Ranjram, and P. W. Lehn, “A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 148-162, Jan. 2015. https://doi.org/10.1109/TPEL.2013.2295967
  17. M. Hajian, J. Robinson, D. Jovcic, and B. Wu, “30kW, 200V/900V, thyristor LCL DC/DC converter laboratory prototype design and testing,” IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1094-1102, Mar. 2014. https://doi.org/10.1109/TPEL.2013.2260564
  18. G. P. Adam, I. A. Gowaid, S. J. Finney, D. Holliday, and B. W. Williams, “Review of DC-DC converters for multi-terminal HVDC transmission networks,” IET Power Electronics, Vol. 9, No. 2, pp. 281-296, Feb. 2016. https://doi.org/10.1049/iet-pel.2015.0530
  19. W. Lin, and D. Jovcic, “Power balancing and dc fault ride through in DC grids with DC hubs and wind farms,” IET Renewable Power Generation, Vol. 9, No. 7, pp. 847-856, Sep. 2015. https://doi.org/10.1049/iet-rpg.2014.0401
  20. M. Corti, E. Tironi, and G. Ubezio, “DC Networks including multi-port DC/DC Converters: Fault Analysis,” IEEE Trans. Ind. Appl., Vol. 52, No. 5, pp. 3655-3662, May. 2016. https://doi.org/10.1109/TIA.2016.2572045
  21. F. Deng, and Z. Chen, “Voltage-balancing method for modular multilevel converters switched at grid frequency,” IEEE Trans. Ind. Electron., Vol. 62, No. 5, pp. 2835-2847, May. 2015. https://doi.org/10.1109/TIE.2014.2362881
  22. W. Liu, C. Zhao, and C. Guo, "The control strategy for Hybrid HVDC using voltage margin control and voltage dependent current order limiter control," in 2nd IET Renewable Power Generation Conference, pp. 1-4, Sep. 2013.
  23. R. Li, L. Xu, D. Holliday, F. Page, S. J. Finney, and B. W. Williams, “Continuous operation of radial multiterminal HVDC systems under DC fault,” IEEE Trans. Power Del., Vol. 31, No. 1, pp. 351-361, Feb. 2016. https://doi.org/10.1109/TPWRD.2015.2471089