참고문헌
- H. Bahouri, J. Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, in: Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011.
- A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal. 183 (2007), no. 2, 215-239. https://doi.org/10.1007/s00205-006-0010-z
- A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. 5 (2007), no. 1, 1-27. https://doi.org/10.1142/S0219530507000857
- R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661
- J. Chemin, Localization in Fourier space and Navier-Stokes system, in: Phase Space Analysis of Partial Differential Equations, pp. 53-136, Proceedings, in: CRM Series, Pisa, 2000.
- G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal. 233 (2006), no. 1, 60-91. https://doi.org/10.1016/j.jfa.2005.07.008
- A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321-362. https://doi.org/10.5802/aif.1757
- A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2008, 953-970. https://doi.org/10.1098/rspa.2000.0701
- A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Super. Pisa Cl. Sci. 26 (1998), no. 2, 303-328.
- A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasilinear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), no. 5, 475-504. https://doi.org/10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
- A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), no. 2, 229-243. https://doi.org/10.1007/BF02392586
- A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), no. 1, 45-61. https://doi.org/10.1007/s002200050801
- A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000), no. 5, 603-610. https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
- R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations 14 (2001), no. 8, 953-988.
- R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 14, 2005.
- A. Degasperis, D. D. Holm, and A. N. W. Hone, A new integral equation with peakon solutions, Theoret. Math. Phys. 133 (2002), 1463-1474. https://doi.org/10.1023/A:1021186408422
- H. R. Dullin, G. A. Gottwald, and D. D. Holm, On asymptotically equivalent shallow water wave equations, Phys. D 190 (2004), no. 1-2, 1-14. https://doi.org/10.1016/j.physd.2003.11.004
- J. Escher, Y. Liu, and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal. 241 (2006), no. 2, 457-485. https://doi.org/10.1016/j.jfa.2006.03.022
- J. Escher, Y. Liu, and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J. 56 (2007), no. 1, 87-177. https://doi.org/10.1512/iumj.2007.56.3040
- Y. Fu, G. Gui, Y. Liu, and C. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations 255 (2013), no. 7, 1905-1938. https://doi.org/10.1016/j.jde.2013.05.024
- B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D 95 (1996), no. 3-4, 229-243. https://doi.org/10.1016/0167-2789(96)00048-6
- K. Grayshan, Peakon solutions of the Novikov equation and properties of the data-tosolution map, J. Math. Anal. Appl. 397 (2013), no. 2, 515-521. https://doi.org/10.1016/j.jmaa.2012.08.006
- G. Gui, Y. Liu, P. Olver, and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys. 319 (2013), no. 3, 731-759. https://doi.org/10.1007/s00220-012-1566-0
- Z. Guo, Some properties of solutions to the weakly dissipative Degasperis-Procesi equation, J. Differential Equations 246 (2009), no. 11, 4332-4344. https://doi.org/10.1016/j.jde.2009.01.032
- A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity 25 (2012), no. 2, 449-479. https://doi.org/10.1088/0951-7715/25/2/449
- A. Himonas and D. Mantzavinos, The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation, Nonlinear Anal. 95 (2014), no. 1, 499-529. https://doi.org/10.1016/j.na.2013.09.028
- A. Himonas and D. Mantzavinos, Holder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear. Sci. 24 (2014), no. 6, 1105-1124. https://doi.org/10.1007/s00332-014-9212-y
- H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations - a Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1511-1549. https://doi.org/10.1080/03605300601088674
- Z. Jiang and L. Ni, Blow-up phenomenon for the integrable Novikov equation, J. Math. Anal. Appl. 385 (2012), no. 1, 551-558. https://doi.org/10.1016/j.jmaa.2011.06.067
- T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. https://doi.org/10.1002/cpa.3160410704
- S. Y. Lai, Global weak solutions to the Novikov equation, J. Funct. Anal. 265(2013) (2013), no. 4, 520-544. https://doi.org/10.1016/j.jfa.2013.05.022
- S. Y. Lai, N. Li, and Y. H. Wu, The existence of global strong and weak solutions for the Novikov equation, J. Math. Anal. Appl. 399 (2013), no. 2, 682-691. https://doi.org/10.1016/j.jmaa.2012.10.048
- J. Lenells and M. Wunsch, On the weakly dissipative Camassa-Holm, Degasperis-Procesi, and Novikov equations, J. Differential Equations 255 (2013), no. 3, 441-448. https://doi.org/10.1016/j.jde.2013.04.015
- Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys. 267 (2006), no. 3, 801-820. https://doi.org/10.1007/s00220-006-0082-5
- H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci. 17 (2007), no. 3, 169-198. https://doi.org/10.1007/s00332-006-0803-3
- Y. Mi and C. Mu, On the Cauchy problem for the modified Novikov equation with peakon solutions, J. Differential Equations 254 (2013), no. 3, 961-982. https://doi.org/10.1016/j.jde.2012.09.016
- L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differential Equations 250 (2011), no. 7, 3002-3021. https://doi.org/10.1016/j.jde.2011.01.030
- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A 42 (2009), no. 34, 342002, 14 pp.
- P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), no. 2, 1900-1906.
- G. Rodrguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. 46 (2001), no. 3, 309-327. https://doi.org/10.1016/S0362-546X(01)00791-X
- F. Tiglay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Not. 2011 (2011), no. 20, 4633-4648.
- Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), no. 11, 1411-1433. https://doi.org/10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
- Z. Yin, Global weak solutions to a new periodic integrable equation with peakon solutions, J. Funct. Anal. 212 (2004), 182-194. https://doi.org/10.1016/j.jfa.2003.07.010
- W. Yan, Y. Li, and Y. Zhang, Global existence and blow-up phenomena for the weakly dissipative Novikov equation, Nonlinear Anal. 75 (2012), no. 4, 2464-2473. https://doi.org/10.1016/j.na.2011.10.044
- W. Yan, Y. Li, and Y. Zhang, The Cauchy problem for the integrable Novikov equation, J. Differential Equations 253 (2012), no. 1, 298-318. https://doi.org/10.1016/j.jde.2012.03.015
- L. Zhao and S. Zhou, Symbolic analysis and exact travelling wave solutions to a new modified Novikov equation, Appl. Math. Comput. 217 (2010), no. 2, 590-598. https://doi.org/10.1016/j.amc.2010.05.093
- Q. Zhang, Global wellposedness of cubic Camassa-Holm equations, Nonlinear Anal. 133 (2016), 61-73. https://doi.org/10.1016/j.na.2015.11.020
-
S. Zhou, M. Xie, and F. Zhang, Persistence properties for the Fokas-Olver-Rosenau-Qiao equation in weighted
$L^p$ spaces, Bound. Value. Probl. 2015 (2015), 1-11. https://doi.org/10.1186/s13661-014-0259-3 - Y. Zhou, Blow-up phenomenon for the integrable Degasperis-Procesi equation, Phys. Lett. A 328 (2004), no. 2, 157-162. https://doi.org/10.1016/j.physleta.2004.06.027