References
- D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474. https://doi.org/10.1017/S0308210506000102
- T. B. Cao, Difference analogues of the second main theorem for meromorphic functions in several complex variables, Math. Nachr. 287 (2014), no. 5-6, 530-545. https://doi.org/10.1002/mana.201200234
- T. B. Cao and R. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl. 444 (2016), no. 2, 1114-1132. https://doi.org/10.1016/j.jmaa.2016.06.050
- H. Cartan, Sur les zeros des combinaisons lineaires de pfonctions holomorphes donnees, Mathematica Cluj 7 (1933), 531.
- H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23. https://doi.org/10.1017/S0027763000016676
-
H. Fujimoto, Nonintegrated defect relation for meromorphic maps of complete Kahler manifolds into
${\mathbb{P}}^{N_1}({\mathbb{C}}){\times}{\cdot}{\cdot}{\cdot}{\times}{\mathbb{P}}^{N_k}({\mathbb{C}})$ , Japan. J. Math. (N.S.) 11 (1985), no. 2, 233-264. https://doi.org/10.4099/math1924.11.233 - R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
- R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
- W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. Lond. Math. Soc. (3) 14 (1965), 93-128.
- P-C. Hu, P. Li, and C-C. Yang, Unicity of Meromorphic Mappings, Vol. 1 of Advances in Complex Analysis and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
- Z.-B. Huang, Value distribution and uniqueness on q-differences of meromorphic functions, Bull. Korean Math. Soc. 50 (2013), no. 4, 1157-1171. https://doi.org/10.4134/BKMS.2013.50.4.1157
- R. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory 12 (2012), no. 1, 343-361. https://doi.org/10.1007/BF03321831
- E. I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. 27 (1983), 377-381.
- J. Noguchi, A note on entire pseudo-holomorphic curves and the proof of Cartan-Nochka's theorem, Kodai Math. J. 28 (2005), no. 2, 336-346. https://doi.org/10.2996/kmj/1123767014
- X. Qi, K. Liu, and L. Yang, Value results of a meromorphic function f(z) and f(qz), Bull. Korean Math. Soc. 48 (2011), no. 6, 1235-1243. https://doi.org/10.4134/BKMS.2011.48.6.1235
- Z. T. Wen, The q-difference theorems for meromorphic functions of several variables, Abstr. Appl. Anal. 2014 (2014), ID 736021, 6 pp.
- Z.-T. Wen and Z. Ye, Wimam-Valiron theorem for q-difference, Annales AcademiaeSci-entiarum FennicaeMathematica 41 (2016), 305-312.
-
P. M.Wong, H. F. Law, and P. P. W.Wong, A second main theorem on
$P^n$ for difference operator, Sci. China Ser. A 52 (2009), no. 12, 2751-758. https://doi.org/10.1007/s11425-009-0213-5 - J. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications , J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038