References
- N. Alon and Z. Furedi, Covering the cube by affine hyperplanes, European J. Combin. 14 (1993), no. 2, 79-83. https://doi.org/10.1006/eujc.1993.1011
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised Edition, Cambridge University Press, 1997.
- C. Carvalho, On the second Hamming weight of some Reed-Muller type codes, Finite Fields Appl. 24 (2013), 88-94. https://doi.org/10.1016/j.ffa.2013.06.004
- M. Chardin and G. Moreno-Socas, Regularity of lex-segment ideals: some closed for-mulas and applications, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1093-1102. https://doi.org/10.1090/S0002-9939-02-06647-9
- D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, 1992.
- D. Eisenbud, The geometry of syzygies: A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics 229, Springer-Verlag, New York, 2005.
- O. Geil, On the second weight of generalized Reed-Muller codes, Des. Codes Cryptogr. 48 (2008), no. 3, 323-330. https://doi.org/10.1007/s10623-008-9211-9
- O. Geil, Evaluation codes from an affine variety code perspective, Advances in algebraic geometry codes, 153-180, Ser. Coding Theory Cryptol., 5, World Sci. Publ., Hackensack, NJ, 2008.
- O. Geil and T. Hholdt, Footprints or generalized Bezout's theorem, IEEE Trans. Inform. Theory 46 (2000), no. 2, 635-641. https://doi.org/10.1109/18.825832
- O. Geil and R. Pellikaan, On the structure of order domains, Finite Fields Appl. 8 (2002), no. 3, 369-396. https://doi.org/10.1006/ffta.2001.0347
- M. Gonzalez-Sarabia, C. Rentera, and H. Tapia-Recillas, Reed-Muller-type codes over the Segre variety, Finite Fields Appl. 8 (2002), no. 4, 511-518. https://doi.org/10.1016/S1071-5797(02)90360-6
- D. Grayson and M. Stillman, Macaulay, Available via anonymous ftp from math. uiuc.edu, 1996.
- J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289-302. https://doi.org/10.1007/s10801-005-4528-1
- I. Kaplansky, Commutative Rings, revised ed., The University of Chicago Press, Chicago, Ill.-London, 1974.
- M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113 (2006), no. 3, 435-454. https://doi.org/10.1016/j.jcta.2005.04.005
- M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin. 30 (2009), no. 4, 429-445. https://doi.org/10.1007/s10801-009-0171-6
- J. Martnez-Bernal, Y. Pitones, and R. H. Villarreal, Minimum distance functions of complete intersections, Preprint, arXiv:1601.07604, 2016.
- J. Martnez-Bernal, Y. Pitones, and R. H. Villarreal, Minimum distance functions of graded ideals and Reed-Muller-type codes, J. Pure Appl. Algebra 221 (2017), no. 2, 251-275. https://doi.org/10.1016/j.jpaa.2016.06.006
- J. C. Migliore, Introduction to liaison theory and Deciency Modules, Progress in Mathematics 165, Birkhauser Boston, Inc., Boston, MA, 1998.
- L. O'Carroll, F. Planas-Vilanova, and R. H. Villarreal, Degree and algebraic properties of lattice and matrix ideals, SIAM J. Discrete Math. 28 (2014), no. 1, 394-427. https://doi.org/10.1137/130922094
- C. Rentera, A. Simis, and R. H. Villarreal, Algebraic methods for parameterized codes and invariants of vanishing ideals over nite fields, Finite Fields Appl. 17 (2011), no. 1, 81-104. https://doi.org/10.1016/j.ffa.2010.09.007
- R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), no. 1, 57-83. https://doi.org/10.1016/0001-8708(78)90045-2
- W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer-Verlag, 1998.
- R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), no. 3, 277-293. https://doi.org/10.1007/BF02568497
- R. H. Villarreal, Monomial Algebras, Second Edition, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.