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FOOTPRINT AND MINIMUM DISTANCE FUNCTIONS

Luis Núñez-Betancourt, Yuriko Pitones, and Rafael H. Villarreal

Abstract. Let S be a polynomial ring over a field K, with a monomial

order ≺, and let I be an unmixed graded ideal of S. In this paper we

study two functions associated to I: The minimum distance function δI
and the footprint function fpI . It is shown that δI is positive and that

fpI is positive if the initial ideal of I is unmixed. Then we show that
if I is radical and its associated primes are generated by linear forms,

then δI is strictly decreasing until it reaches the asymptotic value 1. If

I is the edge ideal of a Cohen–Macaulay bipartite graph, we show that
δI(d) = 1 for d greater than or equal to the regularity of S/I. For a graded

ideal of dimension ≥ 1, whose initial ideal is a complete intersection, we

give an exact sharp lower bound for the corresponding minimum distance
function.

1. Introduction

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over a field K with
the standard grading and let I 6= (0) be a graded ideal of S. The degree or
multiplicity of S/I is denoted by deg(S/I).

Given an integer d ≥ 1, let Fd be the set of all zero-divisors of S/I not in I
of degree d ≥ 1:

Fd := { f ∈ Sd | f /∈ I, (I : f) 6= I},
where (I : f) := {h ∈ S |hf ∈ I} is the quotient ideal or colon ideal of I with
respect to f . The minimum distance function of I is the function δI : N+ → Z
given by

δI(d) :=

{
deg(S/I)−max{deg(S/(I, f))| f ∈ Fd} if Fd 6= ∅,
deg(S/I) if Fd = ∅.

Fix a graded monomial order ≺ on S. The initial ideal of I is denoted by
in≺(I). Let ∆≺(I) be the footprint or Gröbner éscalier of S/I consisting of all
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the standard monomials of S/I, that is, all the monomials of S not in the ideal
in≺(I).

LetM≺,d be the set of all zero-divisors of S/in≺(I) of degree d ≥ 1 that are
in ∆≺(I):

M≺,d := {ta | ta ∈ ∆≺(I) ∩ Sd, (in≺(I) : ta) 6= in≺(I)}.

The footprint function of I, denoted fpI , is the function fpI : N+ → Z given
by

fpI(d) :=

{
deg(S/I)−max{deg(S/(in≺(I), ta)) | ta ∈M≺,d} if M≺,d 6= ∅,
deg(S/I) if M≺,d = ∅.

In this paper we study δI and fpI from a theoretical point of view. The
functions δI and fpI were introduced in [18] and [17], respectively. The interest
in these functions is essentially due to the following two facts: The minimum
distance function is related to the minimum distance in coding theory [18,
Theorem 4.7] and the footprint function is much easier to compute. There are
significant cases in which either the footprint function is a lower bound for the
minimum distance function [17, Lemma 3.10(a)] or the two functions coincide
[17, Corollary 4.4].

The footprint lower bound was used in the works of Geil [7] and Carvalho [3]
to study affine Reed-Muller-type codes. Long before these two papers appeared
the footprint was used by Geil in connection with all kinds of codes (including
one-point algebraic geometric codes); see [8–10] and the references therein.

The contents of this paper are as follows. In Section 2 we present some of
the results and terminology that will be needed in the paper.

Our first result shows that δI is positive if I is unmixed, and that fpI is
also positive if in≺(I) is unmixed (Theorem 3.6). This improves the correlated
non-negativity of the functions δI and fpI that was shown in [17, Lemma 3.10].
We show that if I is a radical unmixed ideal whose associated primes are
generated by linear forms, then δI is strictly decreasing until it reaches the
asymptotic value 1 (Theorem 3.8). This gives a wide generalization of [18,
Theorem 4.5(vi)]. Then we conjecture that δI(d) = 1 for d ≥ reg(S/I), where
reg(S/I) is the regularity of S/I (Conjecture 4.2). We show this conjecture
when I is the edge ideal of a Cohen–Macaulay bipartite graph without isolated
vertices (Proposition 4.7).

If I is a complete intersection monomial ideal of dimension≥ 1, we present an
explicit formula for fpI(d) (Theorem 5.5). In this case fpI(d) = δI(d) (Propo-
sition 2.14). For a graded ideal of dimension ≥ 1, whose initial ideal is a
complete intersection, we give an exact sharp lower bound for the correspond-
ing minimum distance function (Theorem 5.6). As a particular case we recover
[17, Theorem 3.14]; as is seen in [17] this result has interesting applications to
coding theory and to packing and covering in combinatorics.

For all unexplained terminology and additional information, we refer to [2,5]
(for the theory of Gröbner bases, commutative algebra, and Hilbert functions).
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2. Preliminaries

All results of this section are well-known. To avoid repetitions we continue
to employ the notations and definitions used in Section 1.

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over a field K with
the standard grading and let I 6= (0) be a graded ideal of S of dimension k. By
the dimension of I we mean the Krull dimension of S/I. The Hilbert function
of S/I, denoted HI , is given by:

HI(d) := dimK(Sd/Id), d = 0, 1, 2, . . . ,

where Id = I∩Sd. By a theorem of Hilbert [2, Theorem 4.1.3] there is a unique
polynomial hI(t) ∈ Q[t] of degree k− 1 such that hI(d) = HI(d) for d� 0. By
convention the degree of the zero polynomial is −1.

The degree or multiplicity of S/I, denoted deg(S/I), is the positive integer

deg(S/I) :=

{
(k − 1)! lim

d→∞
HI(d)/dk−1 if k ≥ 1,

dimK(S/I) if k = 0.

Definition 2.1. If I is a graded ideal of S, the Hilbert series of S/I, denoted
FI(x), is given by

FI(x) =

∞∑
d=0

HI(d)xd, where x is a variable.

Theorem 2.2 (Hilbert–Serre [22, p. 58]). Let I ⊂ S be a graded ideal of
dimension k. Then there is a unique polynomial h(x) ∈ Z[x] such that

FI(x) =
h(x)

(1− x)k
and h(1) > 0.

Remark 2.3. The leading coefficient of the Hilbert polynomial hI(x) is equal
to h(1)/(k − 1)!. Thus h(1) is equal to deg(S/I).

Definition 2.4. Let I ⊂ S be a graded ideal. The a-invariant of S/I, de-
noted a(S/I), is the degree of FI(x) as a rational function, that is, a(S/I) =
deg(h(x))− k.

Definition 2.5. Let I ⊂ S be a graded ideal and let F? be the minimal graded
free resolution of S/I as an S-module:

F? : 0→
⊕
j

S(−j)bgj → · · · →
⊕
j

S(−j)b1j → S → S/I → 0.

The Castelnuovo–Mumford regularity of S/I (regularity of S/I for short) is
defined as

reg(S/I) = max{j − i | bij 6= 0}.

An excellent reference for the regularity of graded ideals is the book of
Eisenbud [6]. The a-invariant, the regularity, and the depth of S/I are closely
related.
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Theorem 2.6 ([23, Corollary B.4.1]). a(S/I) ≤ reg(S/I) − depth(S/I), with
equality if S/I is Cohen–Macaulay.

Definition 2.7. The regularity index of the Hilbert function of S/I, or simply
the regularity index of S/I, denoted ri(S/I), is the least integer n ≥ 0 such
that HI(d) = hI(d) for d ≥ n.

If I is a graded Cohen-Macaulay ideal of S of dimension 1, then reg(S/I),
the regularity of S/I is equal to ri(S/I), the regularity index of S/I. This
follows from Theorem 2.6.

Definition 2.8. An ideal I ⊂ S is called a complete intersection if there exist
g1, . . . , gr in S such that I = (g1, . . . , gr), where r = ht(I) is the height of I.

Remark 2.9. (a) A graded ideal I is a complete intersection if and only if
I is generated by a homogeneous regular sequence with ht(I) elements (see
[14, Chapter 3]).

(b) A monomial ideal I is a complete intersection if and only if I is minimally
generated by a regular sequence of monomials with ht(I) elements.

Lemma 2.10 ([22, Corollary 3.3]). If I ⊂ S is an ideal generated by homoge-
neous polynomials f1, . . . , fr, with r = ht(I) and δi = deg(fi), then the Hilbert
series of S/I is given by

FI(x) =

∏r
i=1

(
1− xδi

)
(1− x)s

.

Lemma 2.11 ([19, Example 1.5.1], [4, Lemma 3.5]). If I ⊂ S is a complete
intersection ideal generated by homogeneous polynomials f1, . . . , fr, with r =
ht(I) and δi = deg(fi), then the degree and regularity of S/I are given by
deg(S/I) = δ1 · · · δr and reg(S/I) =

∑r
i=1(δi − 1).

Proof. The formula for the degree follows from Remark 2.3 and Lemma 2.10.
As S/I is Cohen–Macaulay, the formula for the regularity follows from Lemma
2.10 and Theorem 2.6. �

If f is a non-zero polynomial in S and ≺ is a monomial order on S, we
denote the leading monomial of f by in≺(f). For a = (a1, . . . , as) ∈ Ns, we
set ta = ta11 · · · tass . Let I ⊂ S be an ideal. A monomial ta is called a standard
monomial of S/I, with respect to ≺, if ta is not the leading monomial of any
polynomial in I, that is, ta is not in the ideal in≺(I). A polynomial f is called
standard if f 6= 0 and f is a K-linear combination of standard monomials. The
set of standard monomials, denoted ∆≺(I), is called the footprint of S/I or
Gröbner éscalier of I. A subset G = {g1, . . . , gr} of I is called a Gröbner basis
of I if

in≺(I) = (in≺(g1), . . . , in≺(gr)).

An element f ∈ S is called a zero-divisor of S/I—as an S-module—if there
is 0 6= a ∈ S/I such that fa = 0, and f is called regular on S/I otherwise.
Notice that f is a zero-divisor if and only if (I : f) 6= I.
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Lemma 2.12 ([17, Lemma 2.8]). Let ≺ be a monomial order, let I ⊂ S be an
ideal, and let f be a polynomial of S of positive degree. If in≺(f) is regular on
S/in≺(I), then f is regular on S/I.

An associated prime of I is a prime ideal p of S of the form p = (I : f) for
some f in S. An ideal I ⊂ S is called unmixed if all its associated primes have
the same height and I is called radical if I is equal to its radical.

Definition 2.13. If fpI(d) = δI(d) for d ≥ 1, we say that I is a Geil–Carvalho
ideal .

Proposition 2.14 ([17, Proposition 3.11]). If I is an unmixed monomial ideal
and ≺ is any monomial order, then δI(d) = fpI(d) for d ≥ 1, that is, I is a
Geil–Carvalho ideal.

Proposition 2.15. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial
order on S, and let d ≥ 1 be an integer. The following hold.

(a) [17, Lemma 3.10(a)] δI(d) ≥ fpI(d).
(b) [18, Theorem 4.5(iv)] If ti is a zero-divisor of S/I for all i, then

fpI(d) ≥ 0.

The lower bound of Proposition 2.15(b) is sharp. In Example 6.3 we show
an unmixed graded ideal I of dimension 1 such that ti is a zero-divisor for all
i and fpI(d) = 0 for d = 1.

Proposition 2.16 (Additivity of the degree [20, Proposition 2.5]). If I is an
ideal of S and I = q1 ∩ · · · ∩ qm is an irredundant primary decomposition, then

deg(S/I) =
∑

ht(qi)=ht(I)

deg(S/qi).

The additivity is one of the most useful and well-known facts about the
degree.

3. Minimum and footprint functions

In this section we study the footprint and minimum distance functions of
unmixed graded ideals over an arbitrary field.

Lemma 3.1. Let I ⊂ S be an unmixed graded ideal and let ≺ be a monomial
order. If f ∈ S is homogeneous and (I : f) 6= I, then

(i) [18, Lemma 4.1] deg(S/(I, f)) ≤ deg(S/(in≺(I), in≺(f))) ≤ deg(S/I),
(ii) deg(S/I) = deg(S/(I : f)) + deg(S/(I, f)) if f /∈ I, and
(iii) deg(S/(I, f)) < deg(S/I) if f /∈ I.

Proof. (ii) Using that I is unmixed, it is not hard to see that S/I, S/(I : f),
and S/(I, f) have the same Krull dimension. There is an exact sequence

0 −→ S/(I : f)[−d]
f−→ S/I −→ S/(I, f) −→ 0.
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Hence, by the additivity of Hilbert functions [25, Lemma 5.1.1], we get

(3.1) HI(i) = H(I : f)(i− d) +H(I,f)(i) for i ≥ 0.

If dimS/I = 0, then using Eq. (3.1) one has∑
i≥0

HI(i) =
∑
i≥0

H(I : f)(i) +
∑
i≥0

H(I,f)(i).

Therefore, using the definition of degree, the required equality follows. If k =
dimS/I − 1 and k ≥ 1, by the Hilbert theorem [2, Theorem 4.1.3], HI , H(I,f),
and H(I : f) are polynomial functions of degree k. Then dividing Eq. (3.1) by

ik and taking limits as i goes to infinity, the required equality follows.
(iii) This part follows at once from part (ii). �

The next alternative formula for δI is valid for unmixed graded ideals. This
expression for δI will be used to show some of our results.

Corollary 3.2 ([18, Theorem 4.4]). Let I ⊂ S be an unmixed graded ideal. If
m = (t1, . . . , ts) and d ≥ 1 is an integer such that md 6⊂ I, then

δI(d) = min{deg(S/(I : f)) | f ∈ Sd \ I}.

Proof. If Fd = ∅, then δI(d) = deg(S/I), and for any f ∈ Sd \ I one has that
(I : f) is equal to I. Thus equality holds. Assume that Fd 6= ∅. Take f ∈ Sd\I.
If (I : f) = I, then deg(S/(I : f)) is equal to deg(S/I). On the other hand if
(I : f) 6= I, that is, f ∈ Fd, then by Lemma 3.1(ii) one has the equality:

deg(S/(I : f)) = deg(S/I)− deg(S/(I, f)).

Notice that in this case deg(S/(I : f)) ≤ deg(S/I). Therefore

δI(d) = deg(S/I)−max{deg(S/(I, f))| f ∈ Fd}
= min{deg(S/(I : f)) | f ∈ Fd}
= min{deg(S/(I : f)) | f ∈ Sd \ I}. �

Definition 3.3. Let I ⊂ S be a non-zero proper graded ideal. The Vasconcelos
function of I is the function ϑI : N+ → N+ given by

ϑI(d) =

{
min{deg(S/(I : f)) | f ∈ Sd \ I} if md 6⊂ I,
deg(S/I) if md ⊂ I.

Very little is known about the Vasconcelos function when I is not an unmixed
graded ideal. Next we show that in certain cases the footprint function can be
expressed in terms of the degree of colon ideals.

Corollary 3.4. Let I be a graded ideal and let ≺ be a monomial order. If
in≺(I) is an unmixed ideal and M≺,d 6= ∅, then

fpI(d) = min{deg(S/(in≺(I) : ta)) | ta ∈ Sd \ in≺(I)}.
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Proof. Take ta ∈M≺,d. By Lemma 3.1(ii) one has the equality:

deg(S/(in≺(I) : ta)) = deg(S/in≺(I))− deg(S/(in≺(I), ta)).

In this case deg(S/(in≺(I) : ta)) ≤ deg(S/in≺(I)). Therefore, noticing that
deg(S/in≺(I)) is equal to deg(S/I), we get

fpI(d) = deg(S/I)−max{deg(S/(in≺(I), ta))| ta ∈M≺,d}
= min{deg(S/(in≺(I) : ta)) | ta ∈M≺,d}
= min{deg(S/(in≺(I) : ta)) | ta ∈ Sd \ in≺(I)}. �

One can apply the corollary to graded lattice ideals of dimension 1.

Proposition 3.5. Let I ⊂ S be a graded lattice ideal of dimension 1 and let
≺ be a graded monomial order with t1 � · · · � ts. The following hold.

(a) If in≺(I) is not prime, then in≺(I) is unmixed andM≺,d 6= ∅ for d ≥ 1.
(b) If in≺(I) is prime, then I = (t1 − ts, . . . , ts−1 − ts) and M≺,d = ∅ for

d ≥ 1.

Proof. The reduced Gröbner basis of I consists of binomials of the form ta+ −
ta− (see [25, Proposition 8.2.7]). It follows that ts is a regular element on
both S/I and S/in≺(I). Hence I and in≺(I) are Cohen–Macaulay ideals. In
particular these ideals are unmixed.

(a) Assume that in≺(I) is not prime. Then there is an associated prime p
of S/in≺(I) such that in≺(I) ( p. Pick a variable ti in p \ in≺(I). Then tit

d−1
s

is in p and is not in in≺(I) for d ≥ 1. Thus tit
d−1
s is in M≺,d for d ≥ 1.

(b) Assume that in≺(I) is prime. This part follows by noticing that in≺(I),
being a face ideal generated by variables, is equal to (t1, . . . , ts−1). �

The next result is a broad generalization of [17, Lemma 3.10].

Theorem 3.6. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial
order on S, and let d ≥ 1 be an integer. The following hold.

(a) δI(d) ≥ 1.
(b) fpI(d) ≥ 1 if in≺(I) is unmixed.
(c) If dim(S/I) ≥ 1 and Fd 6= ∅ for d ≥ 1, then δI(d) ≥ δI(d+ 1) ≥ 1 for

d ≥ 1.

Proof. (a) If Fd = ∅, then δI(d) = deg(S/I) ≥ 1, and if Fd 6= ∅, then using
Lemma 3.1(iii) it follows that δI(d) ≥ 1.

(b) IfM≺,d = ∅, then fpI(d) = deg(S/I) ≥ 1. Next assume thatM≺,d 6= ∅.
As in≺(I) is unmixed, by Corollary 3.4, fpI(d) ≥ 1.

(c) By part (a), one has δI(d) ≥ 1. The set Fd is not empty for d ≥ 1. Thus,
by Corollary 3.2, δI(d) = deg(S/(I : f)) for some f ∈ Fd. As I is unmixed and
dim(S/I) ≥ 1, m is not an associated prime of S/I. Thus, since (I : f) is a
graded ideal, one has (I : f) ( m. Pick a linear form h ∈ S1 such that hf /∈ I.
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As f is a zero-divisor of S/I, so is hf . The ideals (I : f) and (I : hf) have
height equal to ht(I). Therefore taking Hilbert functions in the exact sequence

0 −→ (I : hf)/(I : f) −→ S/(I : f) −→ S/(I : hf) −→ 0

it follows that deg(S/(I : f)) ≥ deg(S/(I : hf)). Therefore, applying Corol-
lary 3.2, we get the inequality δI(d) ≥ δI(d+ 1). �

Lemma 3.7. Let I ⊂ S be a radical unmixed graded ideal and let p1, . . . pm be
its associated primes. If f ∈ Fd for some d ≥ 1, then

deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi).

Proof. Since I is a radical ideal, we get that I = ∩mi=1pi. From the equalities

(I : f) = ∩mi=1(pi : f) = ∩f /∈pi
pi,

and using the additivity of the degree (see Proposition 2.16), the required
equality follows. �

We come to the main result of this section—about the asymptotic behavior
of the minimum distance function–which gives a wide generalization of [18,
Theorem 4.5(vi)].

Theorem 3.8. Let I ⊂ S be an unmixed radical graded ideal. If all the associ-
ated primes of I are generated by linear forms, then there is an integer r0 ≥ 1
such that

δI(1) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Proof. Let p1, . . . , pm be the associated primes of I. As pi is generated by
linear forms, then deg(S/pi) = 1 for all i. Indeed if pi = m, then deg(S/pi) is
dimK(S/pi) = 1, and if pi ( m, then the initial ideal of pi, with respect to the
GRevLex order ≺, is generated by a subset of t1, . . . , ts and deg(S/pi) is equal
to deg(S/in≺(pi)) = 1. The last equality follows noticing that S/in≺(pi) is a
polynomial ring.

If I is prime, then I = pi for some i and Fd = ∅ for d ≥ 1. Thus δI(d) =
deg(S/pi) = 1 for d ≥ 1, and we can take r0 = 1. We may now assume that
I has at least two associated primes, that is, m ≥ 2. As I ( p1, there is a
form h of degree 1 in p1 \ I. Hence, as I is a radical ideal, we get that hd is
in p1 \ I. Thus Fd 6= ∅ for d ≥ 1. Therefore, by Theorem 3.6(c), one has that
δI(d) ≥ δI(d + 1) ≥ 1 for d ≥ 1. Hence, assuming that δI(d) > 1, it suffices
to show that δI(d) > δI(d + 1). By Corollary 3.2, there is f ∈ Fd such that
δI(d) = deg(S/(I : f)). Then, by Lemma 3.7, one has

δI(d) = deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi) ≥ 2.

Hence there are pk 6= pj such that f is not in pk ∪pj . Pick a linear form h in
pk \ pj . Then hf /∈ I because hf /∈ pj , and hf is a zero-divisor of S/I because
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(I : f) 6= I. Noticing that f /∈ pk and hf ∈ pk, one obtains the strict inclusion

{pi|hf /∈ pi} ( {pi| f /∈ pi}.

Therefore, by Lemma 3.7, we get

deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi) >
∑
hf /∈pi

deg(S/pi) = deg(S/(I : hf)).

Hence, by Corollary 3.2, we get δI(d) > δI(d+ 1). �

4. Asymptotic behavior of the minimum distance

Let I ⊂ S be an unmixed radical graded ideal whose associated primes are
generated by linear forms. According to Theorem 3.8, there is an integer r0 ≥ 1
such that

δI(1) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Definition 4.1. The integer r0 is called the regularity index of δI .

If I is the graded vanishing ideal of a set of points in a projective space over
a finite field, then r0 ≤ reg(S/I) [11, 21], but we do not know whether this
holds in general. The regularity of S/I can be computed using Macaulay [12],
but r0 is very difficult to compute.

Conjecture 4.2. Let I ⊂ S be an unmixed radical graded ideal. If all the
associated primes of I are generated by linear forms, then δI(d) = 1 for d ≥
reg(S/I), that is, r0 ≤ reg(S/I).

In this section we give some support for this conjecture. In what follows we
focus in the case that I is an unmixed ideal generated by square-free monomial
ideals of degree 2.

Definition 4.3 ([24]). Let G be a graph with vertex set V (G) = {t1, . . . , ts}
and edge set E(G). The edge ideal of G, denoted by I(G), is the ideal of S
generated by all monomials xe =

∏
ti∈e ti such that e ∈ E(G).

Let G be a graph. A subset F of V (G) is called stable if e 6⊂ F for any
e ∈ E(G), and a subset C of V (G) is a vertex cover if and only if V (G) \ C is
a stable vertex set. A minimal vertex cover is a vertex cover which is minimal
with respect to inclusion. A graph is called unmixed if all its minimal vertex
covers have the same cardinality.

Conjecture 4.2 is open even in the case that I is the edge ideal of an un-
mixed bipartite graph. Below we prove the conjecture for edge ideals of Cohen-
Macaulay graphs.

Definition 4.4. Let A be a set of vertices of a graph G. The induced subgraph
on A, denoted by G[A], is the maximal subgraph of G with vertex set A. A
graph of the form G[A] for some A ⊂ V (G) is called an induced subgraph of G.
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Notice that G[A] may have isolated vertices, i.e., vertices that do not belong
to any edge of G[A]. If G is a discrete graph, i.e., all the vertices of G are
isolated, we set I(G) = 0.

Definition 4.5. An induced matching in a graph G is a set of pairwise disjoint
edges f1, . . . , fr such that the only edges of G contained in ∪ri=1fi are f1, . . . , fr.
The induced matching number , denoted by im(G), is the number of edges in
the largest induced matching.

Proposition 4.6 ([15, Lemma 2.2]). If G is a graph, then reg(R/I(G)) ≥
im(G).

Next we prove Conjecture 4.2 for edge ideals of Cohen–Macaulay bipartite
graphs. A graph G is called Cohen–Macaulay if S/I(G) is Cohen–Macaulay.

Proposition 4.7. If I = I(G) is the edge ideal of a Cohen–Macaulay bipartite
graph without isolated vertices, then δI(d) = 1 for d ≥ reg(S/I).

Proof. By [16, Theorem 1.1], reg(S/I) = im(G). Thus, by Theorem 3.8, it
suffices to show that δI(d) = 1 for some d ≤ im(G). According to [13, Theo-
rem 3.4], there is a bipartition V1 = {x1, . . . , xg}, V2 = {y1, . . . , yg} of G such
that:

(a) ei = {xi, yi} ∈ E(G) for all i,
(b) if {xi, yj} ∈ E(G), then i ≤ j, and
(c) if {xi, yj}, {xj , yk} are in E(G) and i < j < k, then {xi, yk} ∈ E(G).
Next we construct a sequence xi1 , . . . , xid such that ei1 , . . . , eid form an in-

duced matching and V2 is a pairwise disjoint union

(4.1) V2 = NG(xi1) ∪ · · · ∪NG(xid),

where NG(xij )∩NG(xik) = ∅ for j 6= k and NG(xij ) is the neighbor set of xij ,
that is, NG(xij ) is the set of vertices of G adjacent to xij . We set i1 = 1. If
NG(xi1) ( V2, pick yi2 in V2 \NG(xi1). By condition (b), ei1 , ei2 is an induced
matching and NG(xi1) ∩ NG(xi2) = ∅. If NG(xi1) ∪ NG(xi2) ( V2, pick yi3
in V2 \ (NG(xi1) ∪ NG(xi2)). By condition (b), ei1 , ei2 , ei3 form an induced
matching and NG(xij ) ∩ NG(xik) = ∅ for j 6= k. Thus one can continue this
process until we get a sequence xi1 , . . . , xid such that V2 is the disjoint union
of the NG(xij )’s and the eij ’s form an induced matching.

Let p1, . . . , pm be the associated primes of I. There are minimal vertex
covers C1, . . . , Cm of G such that pi is generated by Ci for i = 1, . . . ,m
(see [24, p. 279]). We may assume that Cm = V2. Setting xa = xi1 · · ·xid ,
by Corollary 3.2, it suffices to show that xa is in ∩m−1

i=1 pi \ pm and that
deg(S/(I : xa)) = 1, where S = K[V (G)]. If i 6= m, there is y` /∈ Ci. From
Eq. (4.1), there is xij such that y` ∈ NG(xij ) for some ij . Hence, as Ci covers

the edge {xij , y`}, one has that xij is in pi. Thus xa is in ∩m−1
i=1 pi and xa is

not in pm because pm = (y1, . . . , yg). Therefore

(I : xa) = (p1 ∩ · · · ∩ pm : xa) = (p1 : xa) ∩ · · · ∩ (pm : xa) = pm.
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Hence deg(S/(I : xa)) = 1, as required. �

5. Complete intersections

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over a field K with
the standard grading and let ≺ be a graded monomial order.

Proposition 5.1. Let I ⊂ S be a graded ideal and let ≺ be a monomial or-
der. Suppose that in≺(I) is a complete intersection of height r generated by
tα1 , . . . , tαr with di = deg(tαi) and di ≥ 1 for all i. The following hold.

(a) [19, Example 1.5.1] I is a complete intersection and dim(S/I) = s− r.
(b) deg(S/I) = d1 · · · dr and regS/I =

∑r
i=1(di − 1).

(c) 1 ≤ fpI(d) ≤ δI(d) for d ≥ 1.

Proof. (a) The rings S/I and S/init≺(I) have the same dimension. Thus
dim(S/I) = s − r. As ≺ is a graded order, there are f1, . . . , fr homogeneous
polynomials in I with in≺(fi) = tαi for i ≥ 1. Since

in≺(I) = (in≺(f1), . . . , in≺(fr)),

the polynomials f1, . . . , fr form a Gröbner basis of I, and in particular they
generated I. Hence I is a graded ideal of height r generated by r polynomials,
that is, I is a complete intersection.

(b) This follows at once from part (a) and Lemma 2.11.
(c) By part (a), I is a complete intersection. In particular I is a Cohen–

Macaulay unmixed ideal. Hence this part follows from Proposition 2.15 and
Theorem 3.6. �

Lemma 5.2. Let I ⊂ S be a complete intersection ideal minimally generated
by tα1 , . . . , tαr and let ta = ta11 · · · tass be a zero-divisor of S/I not in I. The
following hold.

(a) tαi and tαj have no common variable for i 6= j.
(b) If t

aj
j is regular on S/I and tc = ta/t

aj
j , then (I : ta) = (I : tc).

(c) If tj is a zero-divisor of S/I, then there is a unique αi = (αi,1, . . . , αi,s)
such that αi,j > 0, that is, tj occurs in exactly one tαi . If aj > αi,j
and tc = ta/tj, then (I : ta) = (I : tc).

(d) For each i there is tβi dividing tαi such that deg(tβi) < deg(tαi) and
(I : ta) = (I : tβ), where tβ = tβ1 · · · tβr .

Proof. (a) This follows readily from the Krull principal ideal theorem [25, The-
orem 2.3.16].

(b) The inclusion “⊃” is clear. To show the reverse inclusion take tδ in
(I : ta), that is, tδta = tδt

aj
j t

c is in I. Hence tδtc is in I because t
aj
j is regular

on S/I. Thus tδ is in (I : tc).
(c) If tj is a zero-divisor of S/I, then tj is in some associated prime of S/I.

Hence, by part (a), tj must occur in a unique tαi for some i. Thus one has
αi,j > 0. We claim that ((tαk) : ta) = ((tαk) : tc) for all k. If k 6= i, by part (a),
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tj is regular on S/(tαk). Thus, as in the proof of part (b), we get the asserted
equality. Next we assume that k = i. The inclusion “⊃” is clear. To show
the reverse inclusion take tδ in ((tαi) : ta), that is, tδta = tγtαi for some tγ .
Since aj > αi,j > 0, tj must divide tγ . Then we can write tδtc = tωtαi , where
tω = tγ/tj . Thus tδ is in ((tαi) : tc). This completes the proof of the claim.
Therefore one has

(I : ta) = ((tα1) : ta) + · · ·+ ((tαr ) : ta)

= ((tα1) : tc) + · · ·+ ((tαr ) : tc) = (I : tc).

(d) Using part (a) and successively applying parts (b) and (c) to ta, we get a
monomial tβ that divides ta such that the following conditions are satisfied: (i)
all variables that occur in tβ are zero-divisors of S/I, (ii) if tβ = tγ11 · · · tγss and
γj > 0, then αi,j ≥ γj , where tαi is the unique monomial, among tα1 , . . . , tαr ,
containing tj , and (iii) (I : ta) = (I : tβ). We let tβi be the product of all t

γj
j

such that tj occurs in tαi . Clearly tβi divides tαi , and deg(tαi) > deg(tβi)
because ta is not in I by hypothesis. �

The next result gives some additional support to Conjecture 4.2.

Proposition 5.3. Let I ⊂ S be a complete intersection monomial ideal of
dimension ≥ 1 minimally generated by tα1 , . . . , tαr . If di = deg(tαi) for i =
1, . . . , r. The following hold.

(a) reg(S/I) =
∑r
i=1(di − 1),

(b) δI(d) = 1 if d ≥ reg(S/I),
(c) δI(d) ≤ (dk+1 − `) dk+2 · · · dr if d < reg(S/I), where 0 ≤ k ≤ r− 1 and

` are integers such that d =
∑k
i=1 (di − 1) + ` and 1 ≤ ` ≤ dk+1 − 1.

Proof. (a) This follows at once from Lemma 2.11.
(b) By Lemma 5.2(a) the monomials tαi and tαj have no common variables

for i 6= j. For each i pick tji in tαi . If I is prime, then I = (tj1 , . . . , tjr ),
reg(S/I) = 0, Fd = ∅ and δI(d) = 1 for d ≥ 1. Thus we may assume that I
is not prime. We claim that Fd 6= ∅ for d ≥ 1. As I is not prime, there is m
such that tjm a zero-divisor of S/I not in I. If a variable tn is not in tαi for
any i, then tn is a regular element on S/I, and Fd 6= ∅ because tjmt

d−1
n is in

Fd. If any variable tn is in tαi for some i, then any monomial of degree d is a
zero-divisor of S/I because any variable tn belongs to at least one associated
prime of S/I. As dim(S/I) ≥ 1, one has md 6⊂ I. Pick a monomial ta of degree
d not in I. Then Fd 6= ∅ because ta is in Fd. This completes the proof of
the claim. We set tci = tαi/tji for i = 1, . . . , r and tc = tc1 · · · tcr . Then it
is seen that (I : tc) = (tj1 , . . . , tjr ) and degS/(I : tc) = 1. Notice that tc is a
zero-divisor of S/I, tc /∈ I and deg(tc) = reg(S/I). Hence, by Corollary 3.2, we
get that δI(d) = 1 for d = reg(S/I). Thus, by Theorem 3.6(c), we get δI(d) = 1
for d ≥ reg(S/I).

(c) There is a monomial ta of degree ` that divides tαk+1 because ` is a
positive integer less than or equal to dk+1 − 1. Setting tc = tc1 · · · tckta and
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tγ = tαk+1/ta, one has

(I : tc) = (tj1 , . . . , tjk , t
γ , tαk+2 , . . . , tαr ).

Hence, by Lemma 2.11, we get degS/(I : tc) = (dk+1 − `)dk+2 · · · dr because

(I : tc) is a complete intersection. Since deg(tc) = d =
∑k
i=1 (di − 1) + `,

tc is not in I, and tc is a zero-divisor of S/I, by Corollary 3.2 we get that
degS/(I : tc) ≥ δI(d), as required. �

Proposition 5.4 ([18, Proposition 5.7]). Let 1 ≤ e1 ≤ · · · ≤ em and 0 ≤ bi ≤
ei − 1 for i = 1, . . . ,m be integers. If b0 ≥ 1, then

(5.1)

m∏
i=1

(ei − bi) ≥

(
k+1∑
i=1

(ei − bi)− (k − 1)− b0 −
m∑

i=k+2

bi

)
ek+2 · · · em

for k = 0, . . . ,m− 1, where ek+2 · · · em = 1 and
∑m
i=k+2 bi = 0 if k = m− 1.

We come to the main result of this section.

Theorem 5.5. Let I ⊂ S be a complete intersection monomial ideal of dimen-
sion ≥ 1 minimally generated by tα1 , . . . , tαr and let d ≥ 1 be an integer. If
di = deg(tαi) for i = 1, . . . , r and d1 ≤ · · · ≤ dr, then

δI(d) = fpI(d) =


(dk+1 − `) dk+2 · · · dr if d <

r∑
i=1

(di − 1) ,

1 if d ≥
r∑
i=1

(di − 1) ,

where 0 ≤ k ≤ r − 1 and ` are integers such that d =
∑k
i=1 (di − 1) + ` and

1 ≤ ` ≤ dk+1 − 1.

Proof. The ideal I is unmixed because I is Cohen–Macaulay. Hence, by Propo-
sition 2.14, I is Geil–Carvalho, that is, δI(d) = fpI(d) for d ≥ 1. Therefore, by
Proposition 5.3, it suffices to show that

fpI(d) ≥ (dk+1 − `)dk+2 · · · dr for d < reg(S/I).

Let ta be a monomial of degree d such that ta /∈ I and (I : ta) 6= I.
By Lemma 5.2(d), for each i there is a monomial tβi dividing tαi such that
deg(tβi) < deg(tαi) and (I : ta) = (I : tβ), where tβ = tβ1 · · · tβr . One can write

tαi = t
αi,1

1 · · · tαi,s
s and tβi = t

βi,1

1 · · · tβi,s
s

for i = 1, . . . , r. According to Lemma 5.2(a) the monomials tαi and tαj have
no common variables for i 6= j. As (I : tβ) is a monomial ideal, it follows that

(I : ta) = (I : tβ) = ({tαi,1−βi,1

1 · · · tαi,s−βi,s
s }ri=1).

Hence, setting gi = t
αi,1−βi,1

1 · · · tαi,s−βi,s
s for i = 1, . . . , r and observing that

gi and gj have no common variables for i 6= j, we get that g1, . . . , gr form a
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regular sequence, that is, (I : ta) is again a complete intersection. Thus, by
Lemma 2.11, we obtain

deg(S/(I : ta)) =

r∏
i=1

 s∑
j=1

(αi,j − βi,j)

 =

r∏
i=1

[
deg(tαi)− deg(tβi)

]
.

Therefore, setting bi = deg(tβi) for i = 1, . . . , r, we get

deg(S/(I : ta)) =

r∏
i=1

(di − bi).

Thus, by Corollary 3.2, it suffices to show the inequality

deg(S/(I : ta)) =

r∏
i=1

(di − bi) ≥ (dk+1 − `)dk+2 · · · dr.

Noticing that d = deg(ta) =
∑k
i=1 (di − 1) + ` ≥ deg(tβ) =

∑r
i=1 bi, one has(

dk+1 +

k∑
i=1

(di − 1)−
r∑
i=1

bi

)
dk+2 · · · dr ≥ (dk+1 − `)dk+2 · · · dr.

Hence, we need only show the inequality

r∏
i=1

(di − bi) ≥

(
k+1∑
i=1

(di − bi)− k −
r∑

i=k+2

bi

)
dk+2 · · · dr,

which follows making b0 = 1 and m = r in Proposition 5.4. �

Theorem 5.6. Let I ⊂ S be a graded ideal of dimension ≥ 1 and let ≺ be
a monomial order. If in≺(I) is a complete intersection of height r generated
by tα1 , . . . , tαr with di = deg(tαi) and 1 ≤ di ≤ di+1 for i ≥ 1, then δI(d) ≥
fpI(d) ≥ 1 and the footprint function is given by

fpI(d) =


(dk+1 − `)dk+2 · · · dr if 1 ≤ d ≤

r∑
i=1

(di − 1)− 1,

1 if d ≥
r∑
i=1

(di − 1) ,

where 0 ≤ k ≤ r − 1 and ` are integers such that d =
∑k
i=1 (di − 1) + ` and

1 ≤ ` ≤ dk+1 − 1.

Proof. By Proposition 5.1 one has δI(d) ≥ fpI(d) ≥ 1. Since fpI(d) is equal to
fpin≺(I)(d) for d ≥ 1, the formula for fpI(d) follows directly from Theorem 5.5.

�

It is an open question whether in Theorem 5.6 one has the equality δI(d) =
fpI(d) for d ≥ 1. If we make r = s − 1 in Theorem 5.6, we recover [17,
Theorem 3.14]. The reader is referred to [17] for some interesting applications
of this result to algebraic coding theory. As is seen in [17, Corollary 4.5] this
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result can also be used to extend a result of Alon and Füredi [1, Theorem 1]
about coverings of the cube {0, 1}n by affine hyperplanes.

6. Computing the minimum distance function

Let I ⊂ S be a graded ideal and let ≺ be a monomial order. The minimum
distance function of I can be expressed as follows.

Theorem 6.1. If ∆≺(I)∩Sd = {ta1 , . . . , tan} is the set of all standard mono-
mials of S/I of degree d ≥ 1 and

F≺,d =

{
f =

∑
i

λit
ai

∣∣∣∣∣ f 6= 0, λi ∈ K, (I : f) 6= I

}
,

then
δI(d) = deg(S/I)−max{deg(S/(I, f))| f ∈ F≺,d}.

Proof. Let f be any element of Fd. Pick a Gröbner basis g1, . . . , gr of I. Then,
by the division algorithm [5, Theorem 3, p. 63], we can write f =

∑r
i=1 aigi+h,

where h is a homogeneous standard polynomial of S/I of degree d. Since
(I : f) = (I : h), we get that h is in F≺,d. Hence, as (I, f) = (I, h), we get the
equalities:

δI(d) = deg(S/I)−max{deg(S/(I, f))| f ∈ Fd}
= deg(S/I)−max{deg(S/(I, f))| f ∈ F≺,d}. �

Notice that Fd 6= ∅ if and only if F≺,d 6= ∅. If K = Fq is a finite field,
then the number of standard polynomials of degree d is qn − 1, where n is the
number of standard monomials of degree d. Hence, we can compute δI(d) for
small values of d, n, and q. To compute fpI(d) is much easier even if the field
is infinite because M≺,d has at most n elements.

Example 6.2. Let K be the field F2 and let I be the ideal of S = F2[t1, t2, t3]
generated by the binomials t1t

2
2 − t21t2, t1t

2
3 − t21t3, t

2
2t3 − t2t

2
3. If S has the

GRevLex order ≺, then using Theorem 6.1 and the procedure below
for Macaulay [12] we get

d 1 2 3 · · ·
deg(S/I) 7 7 7 · · ·
HI(d) 3 6 7 · · ·
δI(d) 4 2 1 · · ·
fpI(d) 4 1 1 · · ·

q=2

S=ZZ/q[t1,t2,t3]

I=ideal(t1*t2^q-t1^q*t2,t1*t3^q-t1^q*t3,t2^q*t3-t2*t3^q)

M=coker gens gb I, degree M, regularity M

h=(d)->degree M - max apply(apply(apply(apply(

toList (set(0..q-1))^**(hilbertFunction(d,M))-
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(set{0})^**(hilbertFunction(d,M)),toList),

x->basis(d,M)*vector x),

z->ideal(flatten entries z)),x-> if not

quotient(I,x)==I then degree ideal(I,x) else 0)--The function

h(d)--gives the minimum distance in degree d

init=ideal(leadTerm gens gb I)

hilbertFunction(1,M),hilbertFunction(2,M),hilbertFunction(3,M)

f=(x)-> if not quotient(init,x)==init then degree ideal(init,x)

else 0

fp=(d) ->degree M -max apply(flatten entries basis(d,M),f)--The

--function fp(d) gives the footprint in degree d

h(1), h(2), fp(1), fp(2)

Example 6.3. Let S = F3[t1, t2, t3, t4] be a polynomial ring over the field F3

with the GRevLex order ≺, let p1, . . . , p5 be the prime ideals

p1 = (t3 + t4, t2 + t4, t1 + t4), p2 = (t3 + t4, t2, t1 − t4), p3 = (t4, t2, t1),
p4 = (t4, t3, t1), p5 = (t4, t2 − t3, t1),

and let I = ∩5
i=1pi be the intersection of these prime ideals. Then, using

Macaulay2 [12], we get reg(S/I) = 2, deg(S/I) = 5, the initial ideal of I is

in≺(I) = (t3t4, t1t4, t1t3, t1t2, t
2
1, t

2
2t4, t

2
2t3),

in≺(I) is a monomial ideal of height 3, m is an associated prime of in≺(I), and
fpI(1) = 0. Thus the lower bound for the footprint fpI(d) given in Proposi-
tion 2.15(b) is sharp.
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