• Title/Summary/Keyword: line: profiles

Search Result 506, Processing Time 0.029 seconds

EFFECTS OF WIND VELOCITY DRIVEN BY ALFVEN WAVES ON THE LINE PROFILES FOR 32 CYG (Alfven파에 의한 항성풍 속도가 32 Cyg의 선윤곽에 미치는 효과)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • We calculate the theoretical line profiles for 32 Cyg in order to investigate the influence of various velocity fields. Line profiles are calculated with wind accelerations driven by Alfven waves and described by velocity parameters. The results for Alfvenic wave model show weakened line profiles. For the orbital phases ${\Phi}$=0.78 and ${\Phi}$=0.06 the Alfvenic models show strong absorption part due to very low densities at the surface of the supergiant. Hence, we conclude the velocity gradient of the wind near the supergiant could influence on the theoretical line formation.

  • PDF

THEORETICAL LINE PROFILES OF THE MAGNETIC COMPACT STARS

  • KIM YONGGI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.235-236
    • /
    • 1996
  • Using a phenomenological model for the accretion onto the magnetic white dwarf, we calclliated some optical line profiles from the magnetosphere of such systems. Line profiles of these systems seem to be produced in the magnetosphere of the compact star due to the reemission of X-ray produced near the stellar surface. Some results of our new calculation and the analysis of these results will be presented. Our results show that the model used here can reproduce the observed optical line profiles and open the possiblity to determine the parameters of individual systems.

  • PDF

PHASTE-AND INCLINATION-DEPENDENT LINE PROFILES OF 32 CYGNI (32 CYGNI의 공전궤도 위상과 궤도면 기울기에 따른 선 윤곽)

  • 김미경;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 1992
  • The line profiles of 32 Cyg have been calculated by integrating the equation of transfer numerically. In order to determine the source function the two level atom and complete redistribution were assumed and Sobolev approximation was used. The peaks of line profiles for the phase 0.99 and 0.70 showed redshift and blueshift, respectively. The line profiles had dependence on the inclination of orbital plane. The result with small inclination showed higher flux of line profile.

  • PDF

Statistical Moment Analysis of the Strong DLA Profiles

  • Chang, Seok-Jun;Bach, Kiehunn;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.35.3-35.3
    • /
    • 2018
  • Incorporating the fully quantum mechanical computation of scattering cross-section and statistical moment analysis of absorption profiles, we investigate the Lyman line asymmetry of extremely high column density systems. Recent high redshift observations detected strong damped Lyman alpha systems (DLAs) whose column density is larger than N_HI ~ [10]^21.3 cm^(-2). Absorption profiles of these DLAs are characterized by the broad and asymmetric damping wing. For accurate description of radiation damping, the second-order time-dependent perturbation theory is adopted. To quantitatively address line asymmetry, we define a distribution function for each Lyman line, and compute statistical moments (mean, standard deviation, skewness and kurtosis) regarding column densities N_HI > [10]^18 cm^(-2). In this work, we present statistical properties of the intrinsic line profiles, and compare them with the Lorentzian cases.

  • PDF

EFFECTS OF STR MGREN SPHERE ON LINE PROFILES OF 32 CYG WITH ALFV N WAVES DRIVEN WIND (STROMGREN 구가 ALFVEN파 항성풍을 가진 32 Cyg의 선윤곽에 미치는 효과)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 1998
  • We calculated line profiles of 32 Cyg with an assumed $str{\"{o}}mgren$ sphere at orbital phases 0.06 and 0.78. The wind models with $Alfv\'{e}n$ waves show diminished line profiles compared to those of the models using power velocity laws. The reduced density of absorbers in HII region produce weak profiles, but line profiles at ${\phi}=0.06$ do not show the differences except in the red edge of absorption. At ${\phi}=0.78$ however, we could reproduce the line profiles of Alfven waves model by the power law models with two velocity gradients. It suggests that the power law model with 2 acceleration regions could reduce the errors in the theoretical line formation with no consideration of wind acceleration mechanism.nism.

  • PDF

High Dispersion Line Profiles of the Planetary Nebula NGC 6833 and its Implication

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • Using the spectroscopic data secured with the Hamilton Echelle Spectrograph attached to a 3-m telescope at the Lick Observatory, we derived the expansion velocities from various line profiles in the 3600 $\AA$ to 10,000 $\AA$ based on the full width at half maximum and double peak of the high dispersion line profiles. The symmetrical shapes of the permitted line profiles indicate that the permitted line zone is symmetrical e.g., a spherical shell or bipolar + torus structures, which might be evidence of relatively recent ejection from the central star. Most other stronger forbidden lines might be coming from a main shell which appears as a bilateral symmetrical morphology, seen in HST and other ground-based telescopic images. The overall expansion velocities of this main shell structure that are responsible for most lines, seem to show the Hubble type expansion, i.e., accelerating shell. The faster expansion velocities of the permitted OII, NII, NIII and perhaps CII lines that do not suit to the Hubble type expansion, imply the existence of a somewhat smaller inner shell inside the outer main shell. We conclude that the nebular shell consists of a swiftly expanding inner shell and an outer normal shell excited by a central star of about 55,000K. The former compact zone appears to be responsible for the permitted C, N, and O lines while the latter extended shell appears to be responsible for H, He, and forbidden lines. We present some evidence that NGC 6833 be a member of the Galactic halo.

  • PDF

EFFECTS OF DIFFERENTIAL ROTATION ON THE CO LINE PROFILES

  • Park, Y.S.;Yun, H.S.;Hong, S.S.;Lee, H.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.2
    • /
    • pp.67-78
    • /
    • 1992
  • Effects of cloud rotation 011 the profiles of CO J=$1{\rightarrow}0$ lines arc investigated by theoretically general ing line profiles under physical conditions similar to t he ones in large globules. The synthesized profiles are presented and their characteristics are discussed. It is found that when the Doppler shift of the observed CO lines is interpreted as the rotation velocity, the optically thin $^{13}CO$ lines underestimate the rotation velocity by up to 10 percents, while the self-reversed optically thick $^{12}CO$ lines overestimate the velocity up to 20 percents. The optically thin line is shown to be of use in probing the distribution of rotation velocity in dark globules.

IRON LINE PROFILES FROM RELATIVISTIC ELLIPTICAL ACCRETION DISKS

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • An elliptical accretion disk may be formed by tidally disrupted debris of a flying-by star in an active galactic nucleus (AGN) or by tidal perturbation due to a companion in a binary black hole system. We investigate the iron K$\alpha$ line profiles expecting from a geometrically thin, relativistic, elliptical disk in terms of model parameters, and find that a broad and skewed line profile can be reproduced well. Its shape is variable to the model parameters, such as, the emissivity power-law index, the ellipticity of the disk, and the major axis orientation of the elliptical accretion disk. We suggest that our results may be useful to search for such an elliptical disk and consequently the tidal disruption event.

LYα LINE FORMATION IN HUBBLE-TYPE SPHERICAL OUTFLOWS IN STARBURST GALAXIES

  • AHN SANG-HYEON;LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.175-185
    • /
    • 2002
  • Almost half of primeval galaxies show P-Cygni type profiles in the Ly$\alpha$ emission line. The main underlying mechanism for the profile formation in these systems is thought to be the frequency re-distribution of the line photons in expanding scattering media surrounding the emission source. A Monte Carlo code is developed to investigate the Ly$\alpha$ line transfer in an optically thick and moving medium with a careful consideration of the scattering in the damping wings. Typical column densities and expansion velocities of neutral hydrogen investigated in this study are $N_{H1}{\~}10^{17-20}\;cm^{-2}$ and ${\Delta}V{\~} 100 km\;s^{-1}$. We investigate the dependence of the emergent profiles on the kinematics and on the column density. Our numerical results are applied to show that the damped Ly$\alpha$ absorbers may possess an expanding H I supershell with bulk flow of ${\~}200 km\;s^{-l}$ and H I column density $N_{H1}{\~}10^{19}\;cm^{-2}$. We briefly discuss the observational implications.

Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel (자동차 외판 특징선 곡면의 단면 형상 측정과 분석)

  • Choe, W.C.;Chung, Y.C.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.