DOI QR코드

DOI QR Code

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts

백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해

  • Jo, Hyeonmin (Department of Chemical Engineering, Kongju National University) ;
  • You, Dalsan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Munjeong (Department of Chemical Engineering, Kongju National University) ;
  • Woo, Jaegyu (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Jo, Young Min (Department of Environmental Engineering, Kyunghee University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 조현민 (공주대학교 화학공학부) ;
  • 유달산 (공주대학교 화학공학부) ;
  • 김문정 (공주대학교 화학공학부) ;
  • 우재규 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부) ;
  • 조영민 (경희대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학부)
  • Received : 2018.11.16
  • Accepted : 2018.11.23
  • Published : 2018.12.31

Abstract

The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.

본 연구의 목적은 친환경 액체 추진제 분해반응에 적용하기 위하여 백금이 담지된 헥사알루미네이트 펠렛 촉매를 개발하는 것이다. 초음파 분무 열분해법으로 제조한 hexaaluminate를 지지체로 사용하고 백금을 활성금속으로 사용한 펠렛 촉매를 두가지 방법으로 제조하였다. 백금 전구체를 헥사알루미네이트 분말에 담지한 후에 바인더를 첨가하여 성형한 펠렛 촉매의 경우(M1 method 촉매), $550^{\circ}C$에서 소성한 촉매는 메조기공이 잘 발달하였다. 그러나 이 촉매를 $1,200^{\circ}C$에서 소성하면 메조기공이 거의 무너지고 약간의 거대기공만 존재하였다. 반면에, 헥사알루미네이트를 성형하여 펠렛을 제조한 후, 펠렛 위에 백금을 담지한 촉매의 경우(M2 method 촉매), $1,200^{\circ}C$에서 소성한 후에도 표면적과 메조기공이 잘 유지되는 것으로 나타났다. 또한, 백금 분산도 측면에서도 M2 method로 제조한 촉매의 내열성이 더 우수하였다. 펠렛 촉매 제조 방법과 소성온도가 ammonium dinitramide (ADN) 또는 hydroxyl ammonium nitrate (HAN)을 주성분으로 하는 액상 추진제의 분해반응에 미치는 영향을 분석하였다. ADN 기반 액체 추진제 및 HAN 기반 액체추진제의 분해반응에서 Pt/hexaaluminate 펠렛 촉매를 사용하면 분해 개시 온도를 큰 폭으로 내릴 수 있음을 확인하였다. 특히, M2 method로 제조한 촉매의 경우, 소성온도를 $1,200^{\circ}C$로 올린 경우에도 분해 개시 온도가 큰 변화를 보이지 않았다. 따라서 M2 method로 제조한 Pt/hexaaluminate 펠렛 촉매가 내열성을 보유하고 있으며, 친환경 액상 추진제의 분해 반응용 촉매로서 잠재력이 있다는 것을 확인하였다.

Keywords

CJGSB2_2018_v24n4_371_f0001.png 이미지

Figure 1. Catalyst manufacturing procedure (a) Method 1: ① hexaaluminate powder, ② impregnation of platinum precursor, ③ extrusion; (b) Method 2: ① hexaaluminate powder, ② extrusion, ③ impregnation of platinum precursor.

CJGSB2_2018_v24n4_371_f0002.png 이미지

Figure 2. Reaction system for catalytic decomposition of liquid monopropellant.

CJGSB2_2018_v24n4_371_f0003.png 이미지

Figure 4. XRD patterns of various catalysts.

CJGSB2_2018_v24n4_371_f0004.png 이미지

Figure 5. SEM images of various catalysts.

CJGSB2_2018_v24n4_371_f0005.png 이미지

Figure 6. Thermal decomposition (a) and catalytic decomposition(b) of ADN-based liquid propellant.

CJGSB2_2018_v24n4_371_f0006.png 이미지

Figure 7. Thermal decomposition (a) and catalytic decomposition(b) of HAN-based liquid propellant.

CJGSB2_2018_v24n4_371_f0007.png 이미지

Figure 3. (a) N2-adsorption isotherms and (b) pore size distribution of various catalysts.

Table 1. BET surface area and total pore volume

CJGSB2_2018_v24n4_371_t0001.png 이미지

Table 2. Surface concentration and Pt particle size of various catalysts

CJGSB2_2018_v24n4_371_t0002.png 이미지

Table 3. Catalytic decomposition of ADN-based liquid propellant

CJGSB2_2018_v24n4_371_t0003.png 이미지

Table 4. Catalytic decomposition of HAN-based liquid propellant

CJGSB2_2018_v24n4_371_t0004.png 이미지

References

  1. Tanaka, N., Matsuo, T., Furukawa, K., Nishida, M., Suemori, S., and Yasutake, A., "The "Greening" of Spacecraft Reaction Control Systems," Mitsubishi Heavy Ind. Tech. Rev., 48(4), 44-50 (2011).
  2. McLean, C. H., Deininger, W. D., Joniatis, J., Aggarwal, P. K., Spores, R. A., Deans, M., Yim, J. T., Bury, K., Martinez, J., Cardiff, E. H., and Bacha, C. E., "Green Propellant Infusion Mission Program Development and Technolgy Maturation," AIAA., 1-21 (2014).
  3. Ide, Y., Takahashi, T., Iwai, K., Nozoe, K., Habu, H., and Tokudome, S., "Potential of ADN-based Ionic Liquid Propellant for Spacecraft Propulsion," Procedia Eng., 99, 332-337 (2015). https://doi.org/10.1016/j.proeng.2014.12.543
  4. Amrousse, R., Katsumi, T., Itouyama, N., Azuma, N., Kagawa, H., Hatai, K., Ikeda, H., and Hori, K., "New HAN-based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications," Combust. Flame, 162, 2686-2692 (2015). https://doi.org/10.1016/j.combustflame.2015.03.026
  5. Amrousse, R., Hori, K., Fetimi, W., and Farhat, K., "HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decomposition Processes," Appl. Catal. B: Environ., 127, 121-128 (2012). https://doi.org/10.1016/j.apcatb.2012.08.009
  6. Amrousse, R., Katsumi, T., Azuma, N., and Hori, K., "Hydroxylammonium nitrate (HAN)-based Green Propellant as Alternative Energy Resource for Potential Hydraznie Substitution: From Lab Scale to Pilot Plant Scale-up," Combust. Flame, 176, 334-348 (2017). https://doi.org/10.1016/j.combustflame.2016.11.011
  7. Zhang, T., Li, G., Yu, Y., Sun, Z., Wang, M., and Chen, J., "Numerical Simulation of Ammonium Dinitramide (ADN)-based Non-toxic Aerospace Propellant Decomposition and Combustion in a Monopropellant Thruster," Energy Convers. Manag., 87, 965-974 (2014). https://doi.org/10.1016/j.enconman.2014.07.074
  8. Lee, H., and Litzinger, T., A., "Chemical Kinetic Study of HAN Decomposition," Combust. Flame, 135(1-2), 151-169 (2003). https://doi.org/10.1016/S0010-2180(03)00157-3
  9. Kleimark, J., Delanoe, R., Demaire, A., and Brinck, T., "Ionization of Ammonium Dinitramide: Decomposition Pathways and Ionization Products," Theor. Chem. Acc., 132, 1-9 (2013).
  10. Courtheoux, L., Amariei, D., Rossignol, S., and Kappenstein, C., "Thermal and Catalytic Decomposition of HNF and HAN Liquid Ionic as Propellants," Appl. Catal. B: Environ., 62(3-4), 217-225 (2006). https://doi.org/10.1016/j.apcatb.2005.07.016
  11. Vyazovkin, S., and Wight, C. A., "Ammonium Dinitramide: Kinetics and Mechanism of Thermal Decomposition," J. Phys. Chem. A, 101(31), 5653-5658 (1997). https://doi.org/10.1021/jp962547z
  12. Gronland, T.-A., Westerberg, B., Bergman, G., Anflo, K., Brandt, J., Lyckfeldt, O., Agrell, J., Ersson, A., Jaras, S., Boutonnet, M., and Wingborg, N., "Reactor for Decomposition of Ammonium Dinitramide-based Liquid Monopropellants and Process for the Decomposition," US7137244B2 (2006).
  13. Machida, M., Eguchi, K., and Arai, H., "Catalytic Properties of $BaMAl_{11}O_{19-{\alpha}}$ (M = Cr, Mn, Fe, Co, and Ni) for High-Temperature Catalytic Combustion," J. Catal., 120, 377-386 (1989). https://doi.org/10.1016/0021-9517(89)90277-7
  14. Gardner, T. H., Shekhawat, D., Berry, D. A., Smith, M. W., Salazar, M., and Kugler, E. L., "Effect of Nickel Hexaaluminate Mirror Cation on Structure-sensitive Reactions during n-tetradecane Partial Oxidation," Appl. Catal. A Gen., 323, 1-8 (2007). https://doi.org/10.1016/j.apcata.2007.01.051
  15. Tsai, S. C., Song, Y. L., Tsai, C. S., Yang, C. C., Chiu, W. Y., and Lin, H. M., "Ultrasonic Spray Pyrolysis for Nanoparticles," J. Mater. Sci., 39, 3647-3657 (2004). https://doi.org/10.1023/B:JMSC.0000030718.76690.11
  16. Suh, W. H., and Suslick, K. S., "Magnetic and Porous Nanospheres from Ultrasonic Spray Pyrolysis," J. Am. Chem. Soc., 127, 12007-12010 (2005). https://doi.org/10.1021/ja050693p
  17. Kim, K. H., Kang, Y. C., Kim, C. H., Park, H. D., and Choi, S.-Y., "Syntesis of $Ba_{1.3}Al_{12}O_{19}:Mn^{2+}$ by Ultrasonic Spray Pyrolysis and Effect of Precursor Type on Morphology and Photoluminescence," J. Korean Ceram. Soc., 38(2), 173-178 (2001).
  18. Heo, S., Hong, S., Jeon, B. K., Li, C., Kim, J. M., Jo, Y. M., Kim, W., and Jeon, J.-K., "Ordered Mesoporous Cu-Mn Metal Oxides for the Catalytic Decomposition of an Energetic Ionic Liquid," J. Nanosci. Nanotechnol., 18(1), 353-358 (2018). https://doi.org/10.1166/jnn.2018.14603
  19. Hong, S., Heo, S., Li, C., Jeon, B. K., Kim J. M., Jo, Y. M., Kim, W., and Jeon, J.-K., "Preparation of Mesoporous CuCe-based Ternary Metal Oxide by Nano-replication and Its Application to Decomposition of Liquid Monopropellant," J. Nanosci. Nanotechnol., 18(2), 1427-1430 (2018). https://doi.org/10.1166/jnn.2018.14908
  20. Baek, C.-M., Jung, K.-Y., Park, K.-Y., Park, S.-B., and Cho, S.-B., "Preparation of Mesoporous and Spherical-shaped Silica Particles by Spray Pyrolysis," Korean Chem. Eng. Res., 46(5), 880-885 (2008).
  21. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)," Pure Appl. Chem., 87(9-10), 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117
  22. Kim, S., Lee, D.-W., Lee, J. Y., Eom, H.-J., Lee, H. J., Cho, I.-H., and Lee, K.-Y., "Catalytic Combustion of Methane in Simulated PSA Offgas over Mn-substituted La-Sr-hexaaluminate ($La_xSr_{1-x}MnAl_{11}O_{19}$)," J. korean Ceram. Soc., 335(1-2), 60-64 (2011).
  23. Sohn, J. M., and Woo, S. I., "A Study on Physical Properties and Catalytic Combustion of Methane of Sr hexaaluminate Prepared using 1-butanol and Ethylene Glycol," Korean Chem. Eng. Res., 45(3), 209-214 (2007).