DOI QR코드

DOI QR Code

A GOLDEN DECADE OF GAMMA-RAY PULSAR ASTRONOMY

  • Hui, Chung-Yue (Department of Astronomy and Space Science, Chungnam National University)
  • Received : 2018.09.19
  • Accepted : 2018.11.14
  • Published : 2018.12.31

Abstract

To celebrate the tenth anniversary since the launch of Fermi Gamma-ray Space Telescope, we take a retrospect to a series of breakthroughs Fermi has contributed to pulsar astronomy in the last decade. Apart from significantly enlarging the population of ${\gamma}$-ray pulsars, observations with the Large Area Telescope onboard Fermi also show the population is not homogeneous. Instead, many classes and sub-classes have been revealed. In this paper, we will review the properties of different types of ${\gamma}$-ray pulsars, including radio-quiet ${\gamma}$-ray pulsars, millisecond pulsars, ${\gamma}$-ray binaries. Also, we will discuss the prospects of pulsar astronomy in the high energy regime.

Keywords

CMHHBA_2018_v51n6_171_f0001.tif 이미지

Figure 1. Seven γ−ray pulsars detected in the EGRET era. (Figure courtesy: NASA HEASARC Education and Public Information database, https://heasarc.gsfc.nasa.gov/docs/objects/pulsars/pulsars_lc.html)

CMHHBA_2018_v51n6_171_f0002.tif 이미지

Figure 2. Fermi on the ground just before its launch. LAT is the box-shape detector on the top. The GBM detectors and the telemetry antennas can be seen on the left side. On the right side, there is the folded solar panel. (Photo courtesy: NASA FSSC)

CMHHBA_2018_v51n6_171_f0003.tif 이미지

Figure 3. The distribution of 167 γ−ray pulsars in our Galaxy as detected by Fermi LAT with 4 years data. (cf. Acero et al. 2015)

CMHHBA_2018_v51n6_171_f0004.tif 이미지

Figure 4. γ-ray light curve of PSR B1957+20 at energies > 2.7 GeV which are folded at the orbital period. Two orbits are shown for clarity. The shaded regions correspond to the phase of radio eclipse. (Wu et al. 2012)

CMHHBA_2018_v51n6_171_f0005.tif 이미지

Figure 5. The main panel shows the multi-wavelength (i.e., from UV to γ-ray) lightcurves of PSR J1023+0038 from June 1, 2013 to November 13, 2013 with different flux scales for each energy band (see upper left corner for details) while the inset box indicates the detailed evolution of the γ-ray emissions between June 6 to 24 July. UV/X-ray: Each datum represents an individual observation taken by Swift. γ-ray: Each datum in the main panel (inset) corresponds to two weeks (3 days), and 95% c.l. upper limits are given for the time intervals during which the detection significances is ≲ 3σ. (Takata et al. 2014)

CMHHBA_2018_v51n6_171_f0006.tif 이미지

Figure 7. γ-ray and radio pulse profiles of PSR J1823−3021A in the globular cluster NGC 6624. (Freire et al. 2011)

CMHHBA_2018_v51n6_171_f0007.tif 이미지

Figure 8. Gamma-ray pulse profile (upper panel) and the phaseogram (i.e., the phases of both pulses as a function of time lower panel) of PSR B1821-24 in the globular cluster M28. Despite the detection at a significance > 4σ, the wig-gling pulse phases in the phaseogram suggest the presence of inaccuracies in the adopted timing ephermeris. (Wu et al. 2013)

CMHHBA_2018_v51n6_171_f0008.tif 이미지

Figure 9. Edge-on views of the fundamental-plane relations of γ−ray GCs based on the updated sample. (Oh & Hui 2017)

CMHHBA_2018_v51n6_171_f0009.tif 이미지

Figure 10. Left panel: Comparison of the magnetic field strength at the light cylinders of radio-quiet γ−ray pulsars and their radio-loud counterparts Right panel: Comparison of the γ−ray spectral curvatures between these two populations. (Hui et al. 2017)

CMHHBA_2018_v51n6_171_f0010.tif 이미지

Figure 11. Evolution of γ−ray flux (top panel) and spin-down rate (bottom panel) of PSR J2021+4026. A sudden flux jump, which is accompanied by an increase in the spin-down rate, can be seen around the epoch of MJD 55850. The pulsar remained in a lower flux and higher spin-down rate until the epoch around MJD 57000 and then gradually recovered to the pre-glitch stage. (Zhao et al. 2017)

CMHHBA_2018_v51n6_171_f0011.tif 이미지

Figure 12. Illustration of the periastron passages of PSR B1259-63/LS2883 as seen in Decemeber 2010. (Illustration: NASA, https://www.nasa.gov/mission_pages/GLAST/news/odd-couple.html)

CMHHBA_2018_v51n6_171_f0012.tif 이미지

Figure 13. Simulated γ−ray sky as expected to be observed by CTA during its Galactic plane survey. (Image: CTA Consortium)

CMHHBA_2018_v51n6_171_f0013.png 이미지

Figure 6. (Left panel:) Comparison of the effective photon indices of black-widows (BWs) and redbacks (RBs) in X-ray. (Right panel:) Comparison of the X-ray luminosities of BWs and RBs. The p−values results from the two-sample Kolmogorov-Smirnov (KS) test and Anderson-Darling (AD) test are given in each figure, which strongly indicate the differences between these two classes of MSPs. (Lee et al. 2018)

References

  1. Abdalla, H., et al. 2018, First Ground-Based Measurement of Sub-20 GeV to 100 GeV ${\gamma}$-Rays from the Vela Pulsar with H.E.S.S. II, A&A, in press (arXiv:1807.01302) https://doi.org/10.1051/0004-6361/201732153
  2. Abdo, A. A., et al. 2008, The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1, Science, 322, 1218 https://doi.org/10.1126/science.1165572
  3. Abdo, A. A., et al. 2009a, Fermi/Large Area Telescope Bright Gamma-Ray Source List, ApJS, 183, 46 https://doi.org/10.1088/0067-0049/183/1/46
  4. Abdo, A. A., et al. 2009b, Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT, Science, 325, 840 https://doi.org/10.1126/science.1175558
  5. Abdo, A. A., et al. 2009c, A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope, Science, 325, 848
  6. Abdo, A. A., et al. 2009d, Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi, Science, 325, 845 https://doi.org/10.1126/science.1177023
  7. Abdo, A. A., et al. 2010, A Population of Gamma-Ray Emitting Globular Clusters Seen with the Fermi Large Area Telescope, A&A, 524, A75 https://doi.org/10.1051/0004-6361/201014458
  8. Abdo, A. A., et al. 2013, The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars, ApJS, 208, 17 https://doi.org/10.1088/0067-0049/208/2/17
  9. Acero, F., et al. 2015, Fermi Large Area Telescope Third Source Catalog, ApJS, 218, 23 https://doi.org/10.1088/0067-0049/218/2/23
  10. Aliu, E., et al. 2011, Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar, Science, 334, 69 https://doi.org/10.1126/science.1208192
  11. Allafort, A., et al. 2013, PSR J2021+4026 in the Gamma Cygni Region: The First Variable Gamma-Ray Pulsar Seen by the Fermi LAT, ApJ, 777, L2 https://doi.org/10.1088/2041-8205/777/1/L2
  12. Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, A New Class of Radio Pulsars, Nature, 300, 728 https://doi.org/10.1038/300728a0
  13. Archibald, A. M., et al. 2009, A Radio Pulsar/X-ray Binary Link, Science, 324, 1411
  14. Archibald, A. M., et al. 2010, X-Ray Variability and Evidence for Pulsations from the Unique Radio Pulsar/X-Ray Binary Transition Object FIRST J102347.6+003841, ApJ, 722, 88 https://doi.org/10.1088/0004-637X/722/1/88
  15. Bertsch, D. L., et al. 1992, Pulsed High-Energy Gamma-Radiation from Geminga (1E0630 + 178), Nature, 357, 306 https://doi.org/10.1038/357306a0
  16. Bignami, G. F., Caraveo, P. A., & Lamb, R. C. 1983, An Identification for 'Geminga' (2CG 195+04) 1E 0630+178 - A Unique Object in the Error Box of the High-Energy Gamma-Ray Source, ApJ, 272, L9 https://doi.org/10.1086/184107
  17. Bignami, G. F., & Caraveo, P. A. 1992, Geminga: New Period, Old Gamma-Rays, Nature, 357, 287
  18. Cheng, K. S., & Zhang, L. 1999, Multicomponent X-Ray Emissions from Regions near or on the Pulsar Surface, ApJ, 515, 337 https://doi.org/10.1086/307016
  19. Cheng, K. S., Chernyshov, D. O., Dogiel, V. A., Hui, C. Y., & Kong, A. K. H. 2010, The Origin of Gamma Rays from Globular Clusters, ApJ, 723, 1219 https://doi.org/10.1088/0004-637X/723/2/1219
  20. Cheng, K. S. 2013, Gamma-Ray Emission from Millisecond Pulsars - An Outergap Perspective, JASS, 30, 153
  21. Clark, C. J., et al. 2018, Einstein@Home Discovers a Radio-Quiet Gamma-Ray Millisecond Pulsar, Science Advances, 4, 7228 https://doi.org/10.1126/sciadv.aao7228
  22. Dubus, G., 2013, Gamma-Ray Binaries and Related Systems, A&ARv, 21, 64 https://doi.org/10.1007/s00159-013-0064-5
  23. Dubus, G., Guillard, N., Petrucci, P.-O., & Martin, P. 2017, Sizing up the Population of Gamma-Ray Binaries, A&A, 608, A5 https://doi.org/10.1051/0004-6361/201730905
  24. Fabian, A. C., Pringle, J. E., Verbunt, F., & Wade, R. A. 1983, Do Galactic Bulge X-Ray Sources Evolve into Millisecond Pulsars, Nature, 301, 222 https://doi.org/10.1038/301222a0
  25. Fichtel, C. E., et al. 1975, High-Energy Gamma-Ray Results from the Second Small Astronomy Satellite, ApJ, 198, 163 https://doi.org/10.1086/153590
  26. Freire, P. C. C., et al. 2011, Fermi Detection of a Luminous Gamma-Ray Pulsar in a Globular Cluster, Science, 334, 1107
  27. Fruchter, A. S., Stinebring, D. R., & Taylor, J. H. 1988, A Millisecond Pulsar in an Eclipsing Binary, Nature, 333, 237 https://doi.org/10.1038/333237a0
  28. Halpern, J. P., & Holt, S. S. 1992, Discovery of Soft X-Ray Pulsations from the Gamma-Ray Source Geminga, Nature, 357, 222 https://doi.org/10.1038/357222a0
  29. Harding, A. K. 2013, Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data, JASS, 30, 145
  30. Hartman, R. C., et al. 1999, The Third EGRET Catalog of High-Energy Gamma-Ray Sources, ApJS, 123, 79 https://doi.org/10.1086/313231
  31. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Observation of a Rapidly Pulsating Radio Source, Nature, 217, 709 https://doi.org/10.1038/217709a0
  32. Homer, L., et al. 2006, XMM-Newton and Optical Follow-Up Observations of SDSS J093249.57+472523.0 and SDSS J102347.67+003841.2, AJ, 131, 562 https://doi.org/10.1086/498346
  33. Huang, R. H. H., et al. 2012, X-Ray Studies of the Black Widow Pulsar PSR B1957+20, ApJ, 760, 92
  34. Hui, C. Y., Cheng, K. S., & Taam, R. E. 2010, Dynamical Formation of Millisecond Pulsars in Globular Clusters, ApJ, 714, 1149
  35. Hui, C. Y., et al. 2011, The Fundamental Plane of Gamma-Ray Globular Clusters, ApJ, 726, 100 https://doi.org/10.1088/0004-637X/726/2/100
  36. Hui, C. Y. 2014, Spider Invasion Across the Galaxy, JASS, 31, 101
  37. Hui, C. Y., et al. 2015a, Searches for Millisecond Pulsar Candidates among the Unidentified Fermi Objects, ApJ, 809, 68 https://doi.org/10.1088/0004-637X/809/1/68
  38. Hui, C. Y., et al. 2015b, A Detailed X-Ray Investigation of PSR J2021+4026 and the Gamma-Cygni Supernova Remnant, ApJ, 799, 76 https://doi.org/10.1088/0004-637X/799/1/76
  39. Hui, C.-Y., & Lee, J. 2016, On the Spectral Shape of Non-Recycled Gamma-Ray Pulsars, JASS, 33, 101
  40. Hui, C. Y., Lee, J., Takata, J., Ng, C. W., & Cheng, K. S. 2017, Differences between Radio-Loud and Radio-Quiet Gamma-Ray Pulsars as Revealed by Fermi, ApJ, 834, 120 https://doi.org/10.3847/1538-4357/834/2/120
  41. Keith, M. J., et al. 2009, Discovery of 28 Pulsars Using New Techniques for Sorting Pulsar Candidates, MNRAS, 395, 837 https://doi.org/10.1111/j.1365-2966.2009.14543.x
  42. Kong, A. K. H., Hui, C. Y., & Cheng, K. S. 2010, Fermi Discovery of Gamma-Ray Emission from the Globular Cluster Terzan 5, ApJ, 712, L36 https://doi.org/10.1088/2041-8205/712/1/L36
  43. Kong, A. K. H., et al. 2012, Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar, ApJ, 747, L3 https://doi.org/10.1088/2041-8205/747/1/L3
  44. Kluzniak, W., Ruderman, M., Shaham, J., & Tavani, M. 1998, Nature and Evolution of the Eclipsing Millisecond Binary Pulsar PSR1957 + 20, Nature, 334, 225
  45. Kuiper, L., & Hermsen, W. 2015, The Soft Gamma-Ray Pulsar Population: A High-Energy Overview, MNRAS, 449, 3827 https://doi.org/10.1093/mnras/stv426
  46. Lee, J., et al. 2018, X-Ray Census of Millisecond Pulsars in the Galactic Field, ApJ, 864, 23
  47. Li, K. L., et al. 2014, NuSTAR Observations and Broadband Spectral Energy Distribution Modeling of the Millisecond Pulsar Binary PSR J1023+0038, ApJ, 797, 111 https://doi.org/10.1088/0004-637X/797/2/111
  48. Li, K.-L., et al. 2016, Discovery of a Redback Millisecond Pulsar Candidate: 3FGL J0212.1+5320, ApJ, 833, 147 https://doi.org/10.3847/1538-4357/833/2/147
  49. Lin, L. C. C., et al. 2013, Discovery of X-Ray Pulsation from the Geminga-Like Pulsar PSR J2021+4026, ApJ, 770, L9 https://doi.org/10.1088/2041-8205/770/1/L9
  50. Lin, L. C.-C. 2016, Radio-Quiet Gamma-Ray Pulsars, JASS, 33, 147
  51. Lloyd, S. J., Chadwick, P. M., & Brown, A. M. 2018,Gamma-Ray Emission from High Galactic Latitude Globular Clusters, MNRAS, 480, 4782
  52. Lorimer, D. R., et al. 2006, The Parkes Multibeam PulsarSurvey - VI. Discovery and Timing Of 142 Pulsars and a Galactic Population Analysis, MNRAS, 372, 777 https://doi.org/10.1111/j.1365-2966.2006.10887.x
  53. Manchester, R. N., et al. 2001, The Parkes Multi-Beam Pulsar Survey - I. Observing and Data Analysis Systems, Discovery And Timing Of 100 Pulsars, MNRAS, 328, 17 https://doi.org/10.1046/j.1365-8711.2001.04751.x
  54. Mattox, J. R., et al. 1992, SAS 2 Observation of Pulsed High-Energy Gamma Radiation from Geminga, ApJ, 401, L23 https://doi.org/10.1086/186661
  55. Mirabal, N., Halpern, J. P., Eracleous, M., & Becker, R. H.2000, Search for the Identification of 3EG J1835+5918:Evidence for a New Type of High-Energy Gamma-Ray Source, ApJ, 541, 180
  56. Ng, C.-W., Cheng, K.-S., & Takata, J. 2016a, Exploring the Extra Component in the Gamma-Ray Emission of the New Redback Candidate 3FGL J2039.6-5618, JASS, 33,93
  57. Ng, C. W., Takata, J., & Cheng, K. S. 2016b, Observation and Simulation of the Variable Gamma-Ray Emission from PSR J2021+4026, ApJ, 825, 18
  58. Oh, K., & Hui, C. Y. 2017, Reexamining the gamma-Ray Properties of Globular Clusters, Proceedings of the 7th International Fermi Symposium, Held 15-20 October 2017, in Garmisch-Partenkirchen, Germany (IFS2017),id.106
  59. Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002,Re-Examining the X-Ray versus Spin-Down Luminosity Correlation of Rotation Powered Pulsars, A&A, 387, 993 https://doi.org/10.1051/0004-6361:20020472
  60. Radhakrishnan, V., & Srinivasan, G. 1982, On the Origin of the Recently Discovered Ultra-Rapid Pulsar, Current Science, 51, 1096
  61. Ransom, S. M. 2008, Dynamical Evolution of Dense Stellar Systems, Proceedings of the International Astronomical Union, IAU Symposium, Volume 246, 291
  62. Ray, P. S., et al. 2014, Discovery of the Radio and Gamma-Ray Pulsar PSR J2339-0533 Associated with the Fermi LAT Bright Source 0FGL J2339.8-0530, AAS, AAS Meeting #223, id.140.07
  63. Reynolds, M. T., et al. 2007, The Light Curve of the Companion to PSR B1957+20, MNRAS, 379, 1117 https://doi.org/10.1111/j.1365-2966.2007.11991.x
  64. Ruderman, M., Shaham, J., & Tavani, M. 1989a, Accretion Turnoff and Rapid Evaporation of Very Light Secondaries in Low-Mass X-Ray Binaries, ApJ, 336, 507 https://doi.org/10.1086/167029
  65. Ruderman, M., Shaham, J., Tavani, M., & Eichler, D. 1989b, Late Evolution of Very Low Mass X-Ray Binaries Sustained by Radiation from Their Primaries, ApJ, 343, 292 https://doi.org/10.1086/167704
  66. Song, Y., Cheng, K. S., & Takata, J. 2016, Theoretical Study of Gamma-Ray Pulsars, JASS, 33, 69
  67. Stappers, B. W., et al. 2013, State-Change in the "Transition" Binary Millisecond Pulsar J1023+0038, ATel, 5513
  68. Takata, J., et al. 2014, Multi-Wavelength Emissions from the Millisecond Pulsar Binary PSR J1023+0038 during an Accretion Active State, ApJ, 785, 131 https://doi.org/10.1088/0004-637X/785/2/131
  69. Tam, P. H. T., et al. 2011a, Gamma-Ray Emission from the Globular Clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752, ApJ, 729, 90 https://doi.org/10.1088/0004-637X/729/2/90
  70. Tam, P. H. T., et al. 2011b, Discovery of GeV Gamma-Ray Emission from PSR B1259-63/LS 2883, ApJ, 736, L10 https://doi.org/10.1088/2041-8205/736/1/L10
  71. Tam, P. H. T., et al. 2015, High-Energy Observations of PSR B1259-63/LS 2883 through the 2014 Periastron Passage: Connecting X-Rays to the GeV Flare, ApJ, 798, L26
  72. Tam, P,-H. T., Hui, C. Y., & Kong, A. K. H. 2016, Gamma-Ray Emission from Globular Clusters, JASS, 33, 1
  73. Tam, P. H. T., He, X.-B., Pal, P. S., & Cui, Y. 2018, The Hour-Timescale GeV Flares of PSR B1259-63 in 2017, ApJ, 862, 165 https://doi.org/10.3847/1538-4357/aacf00
  74. Tauris, T. M., & van den Heuvel, E. P. J. 2006, Formation and Evolution of Compact Stellar X-Ray Sources, Compact Stellar X-Ray Sources, edit. by Walter Lewin & Michiel van der Klis, Cambridge Astrophysics Series (Cambridge: Cambridge University Press), 39
  75. Thompson, D. J. 1993, Timing Analysis of EGRET/CGRO Data, Isolated Pulsars, Proceedings of the Los Alamos workshop (in New Mexico on February 23-28, 1992), edited by K. A. Riper, R. Epstein and C. Ho. (Cambridge: Cambridge University Press), 385
  76. Trepl, L., et al. 2010, Multiwavelength Properties of a New Geminga-Like Pulsar: PSRJ2021+4026, MNRAS, 405, 1339
  77. van den Heuvel, E. P. J., & van Paradijs, J. 1988, Fate of the Companion Stars of Ultra-Rapid Pulsars, Nature, 334, 227 https://doi.org/10.1038/334227a0
  78. van Paradijs, J., et al. 1988, Optical Observations of the Eclipsing Binary Radio Pulsar PSR1957+20, Nature, 334, 684 https://doi.org/10.1038/334684a0
  79. Wang, Y., Takata, J., & Cheng, K. S. 2013, Mechanism of the X-Ray and Soft Gamma-Ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58, JASS, 30, 91
  80. Wu, E. M. H., et al. 2012, Orbital-Phase-Dependent Gamma-Ray Emissions from the Black Widow Pulsar, ApJ, 761, 181 https://doi.org/10.1088/0004-637X/761/2/181
  81. Wu, J. H. K., et al. 2013, Search for Pulsed Gamma-Ray Emission from Globular Cluster M28, ApJ, 765, L47 https://doi.org/10.1088/2041-8205/765/2/L47
  82. Wu, X., et al. 2014, PANGU: A High Resolution Gamma-Ray Space Telescope, arXiv:1407.0710
  83. Yen, T.-C., et al. 2013, Optical and Infrared Lightcurve Modeling of the Gamma-Ray Millisecond Pulsar 2FGLJ2339.6-0532, JASS, 30, 159
  84. Yu, H.-F., Hui, C., Ye, K., Albert, K. H., & Takata, J. 2018, Bayesian Inference on the Radio-Quietness of Gamma-Ray Pulsars, ApJ, 857, 120 https://doi.org/10.3847/1538-4357/aab959
  85. Zhang, P. F., et al. 2016, Detection of Gamma-Ray Emission from Globular Clusters M15, NGC 6397, 5904, 6218 and 6139 with Fermi-LAT, MNRAS, 459, 99 https://doi.org/10.1093/mnras/stw567
  86. Zhao, J., et al. 2017, Mode Change of a Gamma-Ray Pulsar, PSR J2021+4026, ApJ, 842, 53 https://doi.org/10.3847/1538-4357/aa74d8
  87. Zhou, J. N., et al. 2015, Gamma-Ray Emission from Globular Clusters 2MS-GC01, IC 1257, FSR 1735, NGC 5904 and 6656, MNRAS, 448, 3215