DOI QR코드

DOI QR Code

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand (Department of Pure Mathematics, University of Calcutta 35)
  • 투고 : 2018.02.02
  • 심사 : 2018.06.04
  • 발행 : 2018.12.23

초록

The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.

키워드

참고문헌

  1. L. Alias, A. Romero and M. Sanchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Geometry and Topology of Submanifolds VII, World Sci. Publ., River Edge, NJ, (1995), 67-70.
  2. A. Barnes, On shear free normal flows of a perfect fluid, Gen. Relativity Gravitation, 4(1973), 105-129. https://doi.org/10.1007/BF00762798
  3. J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian Geometry, 2nd Edition, Monographs and Textbooks in Pure and Applied Mathematics 202, Marcel Dekker, Inc., New York, 1996.
  4. F. Brickell and R. S. Clark, Differentiable manifolds, Van Nostrand Reinhold Company, London,1970.
  5. M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15(1988), 526-531.
  6. M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
  7. M. C. Chaki and S. Roy, Spacetimes with covariant-constant energy-momentum tensor, Int. J. Theor. Phys., 35(1996), 1027-1032. https://doi.org/10.1007/BF02302387
  8. M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys., 21(1994), 1-7.
  9. B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 46(2014), Art. 1833, 5 pp.
  10. A. De, C. Ozgur and U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys., 51(2012), 2878-2887. https://doi.org/10.1007/s10773-012-1164-0
  11. L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
  12. G. S. Hall, Symmetries and Curvature Structure in general Relativity, World Scientific Lecture Notes in Physics 46, World Scientific, Singapore, 2004.
  13. H. Karchar, Infinitesimal characterization of Friedmann Universe, Arch. Math. (Basel), 38(1982), 58-64. https://doi.org/10.1007/BF01304758
  14. C. A. Mantica and L. G. Molinari, Weakly Z Symmetric manifolds, Acta Math. Hungar., 135(1-2)(2012), 80-96. https://doi.org/10.1007/s10474-011-0166-3
  15. C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9(1)(2012), 1250004, 21 pp.
  16. C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys., 9(7)(2012), 1250059, 26 pp. https://doi.org/10.1142/S0219887812500594
  17. C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys., 55(2014), 042502 12 pp. https://doi.org/10.1063/1.4871442
  18. C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times with divergence-free Weyl tensor and pp-waves, Int. J. Geom. Methods Mod. Phys., 13(2016), 1650015, 34 pp. https://doi.org/10.1142/S0219887816500158
  19. J. Mikes and L. Rachunek, Torse-forming vector fields in T-symmetric Riemannian spaces, Steps in Differential Geometry, Proc. of the Colloq. on Diff. Geometry, 25-30 July, (2000), 219-229, Debrecen.
  20. M. Novello and M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225(1978), 719-724. https://doi.org/10.1086/156533
  21. B. O'Neill, Semi-Riemannian Geometry with application to the Relativity, Academic Press, New York-London, 1983.
  22. A. Z. Petrov, Einstein spaces, Pergamon press, Oxford, 1949.
  23. A. K. Roychaudhury, S. Banerji and A. Banerjee, General relativity, astrophysics and cosmology, Springer-Verlag, 1992.
  24. M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativity Gravitation, 30(1998), 915-932. https://doi.org/10.1023/A:1026664209847
  25. M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields, J. Geom. Phys., 31(1999), 1-15. https://doi.org/10.1016/S0393-0440(98)00061-8
  26. J. A. Schouten, Ricci-Calculus, Springer, Berlin, 1954.
  27. R. Sharma, Proper conformal symmetries of space-times with divergence-free Weyl conformal tensor, J. Math. Phys., 34(1993), 3582-3587. https://doi.org/10.1063/1.530046
  28. L. C. Shepley and A. H. Taub, Space-times containing perfect fluids and having a vanishing conformal divergence, Commun. Math. Phys., 5(1967), 237-256. https://doi.org/10.1007/BF01646477
  29. S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
  30. H. Sthepani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Hertl, Exact solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, Cambridge University Press 2nd ed., 2003.
  31. L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.), 53(1993), 140-148.
  32. K. Yano, Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16(1940), 195-200. https://doi.org/10.3792/pia/1195579139
  33. K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20(1944), 340-345. https://doi.org/10.3792/pia/1195572958
  34. F. O. Zengin, M-Projectively flat spacetimes, Math. Rep., 14(64)/4(2012), 363-370.