DOI QR코드

DOI QR Code

Density by Moduli and Korovkin Type Approximation Theorem of Boyanov and Veselinov

  • Bhardwaj, Vinod K. (Department of Mathematics, Kurukshetra University) ;
  • Dhawan, Shweta (Department of Mathematics, KVA DAV College for Women Karnal-132001)
  • 투고 : 2018.04.04
  • 심사 : 2018.08.13
  • 발행 : 2018.12.23

초록

The concept of f-statistical convergence which is, in fact, a generalization of statistical convergence, has been introduced recently by Aizpuru et al. (Quaest. Math. 37: 525-530, 2014). The main object of this paper is to prove an f-statistical analog of the classical Korovkin type approximation theorem of Boyanov and Veselinov. It is shown that the f-statistical analog is intermediate between the classical theorem and its statistical analog. As an application, we estimate the rate of f-statistical convergence of the sequence of positive linear operators defined from $C^*[0,{\infty})$ into itself.

키워드

참고문헌

  1. A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37(2014), 525-530. https://doi.org/10.2989/16073606.2014.981683
  2. F. Altomare, Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 5(2010), 92-164.
  3. V. A. Baskakov, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk, 113(1957), 249-251 (in Russian).
  4. C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput., 219(18)(2013), 9821-9826. https://doi.org/10.1016/j.amc.2013.03.115
  5. V. K. Bhardwaj and S. Dhawan, f-statistical convergence of order ${\alpha}$ and strong Cesaro summability of order ${\alpha}$ with respect to a modulus, J. Inequal. Appl., 2015:332(2015), 14 pp. https://doi.org/10.1186/s13660-015-0850-x
  6. V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal., 2016(2016), Art. ID 9365037, 11 pp.
  7. V. K. Bhardwaj and S. Dhawan, Density by moduli and Wijsman lacunary statistical convergence of sequences of sets, J. Inequal. Appl., 2017:25(2017), 20 pp. https://doi.org/10.1186/s13660-017-1294-2
  8. V. K. Bhardwaj and S. Dhawan, Korovkin type approximation theorem via f-statistical convergence, J. Math. Anal., 9(2)(2018), 99-117.
  9. V. K. Bhardwaj, S. Dhawan and O. Dovgoshey, Density by moduli and Wijsman statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 24(3)(2017), 393-415.
  10. V. K. Bhardwaj, S. Dhawan and S. Gupta, Density by moduli and statistical bound-edness, Abstr. Appl. Anal., 2016(2016), Art. ID 2143018, 6 pp.
  11. H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat., 2(1952), 43-56. https://doi.org/10.1007/BF02591381
  12. B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.), 14(62)(1970), 9-13.
  13. L. N. Braha, Some weighted equi-statistical convergence and Korovkin type-theorem, Results Math., 70(2016), 433-446. https://doi.org/10.1007/s00025-016-0578-z
  14. O. Duman, Statistical approximation for periodic functions, Demonstratio Math., 36(2003), 873-878.
  15. O. Duman, K. Demirci and S. Karakus, Statistical approximation for infinite intervals, Preprint.
  16. H. Fast, Sur la convergence statistique, Colloquium Math., 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  17. J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
  18. A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129-138. https://doi.org/10.1216/rmjm/1030539612
  19. A. Holhos, The rate of approximation of functions in an infinite interval by positive linear operators, Stud. Univ. Babes-Bolyai Math., 55(2)(2010), 133-142.
  20. A. Holhos, Contributions to the approximation of functions, Babes-Bolyai University, Cluj-Napoca, Romania. Ph. D. thesis summary, 2010.
  21. U. Kadak, N. L. Braha and H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302(2017), 80-96.
  22. E. Kolk, Statistically convergent sequences in normed spaces, Reports of convergence "Methods of algebra and analysis", Tartu, (1988), 63-66 (in Russian).
  23. P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Doklady Akad. Nauk. SSSR(N.S.), 90(1953), 961-964 (in Russian).
  24. P. P. Korovkin, Linear operators and approximation theory, Hindustan Publ. Corp., Delhi, 1960.
  25. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1986), 161-166. https://doi.org/10.1017/S0305004100065968
  26. S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkin's type approximation theorem, J. Inequal. Appl., 2016:101(2016), 13 pp. https://doi.org/10.1186/s13660-016-1040-1
  27. S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical summability (C, 1) and a Korovkin type approximation theorem, J. Inequal. Appl., 2012:172(2012), 8 pp. https://doi.org/10.1186/1029-242X-2012-172
  28. M. Mursaleen and A. Alotaibi, Statistical lacunary summability and Korovkin type approximation theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat., 57(2011), 373-381. https://doi.org/10.1007/s11565-011-0122-8
  29. I. Niven, H. S. Zuckerman and H. L. Montgomery, An introduction to the theory of numbers, Fifth Ed., John Willey and Sons, New York, 1991.
  30. P. A. Pitul, Evaluation of the approximation order by positive linear operators, Babe-Bolyai University, Cluj-Napoca, Romania. Ph. D. thesis, 2007.
  31. T. Popoviciu, Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare, in Lucraarile Sesiunii Generale Stiintifice din 2-12 iunie 1950, 1664-1667, Editura Academiei Republicii Populare Romane, Bucuresti, (1951) (in Romanian).
  32. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978. https://doi.org/10.4153/CJM-1973-102-9
  33. T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2)(1980), 139-150.
  34. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361-375. https://doi.org/10.1080/00029890.1959.11989303
  35. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.
  36. A. Zygmund, Trigonometric series, Second Ed., Camb. Univ. Press, Camb. UK, 1979.