DOI QR코드

DOI QR Code

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi (MOE Key Laboratory of Deep Underground Scienceand Engineering, School of Architectureand Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Scienceand Engineering, School of Architectureand Environment, Sichuan University) ;
  • Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
  • Received : 2018.08.18
  • Accepted : 2018.11.29
  • Published : 2018.12.25

Abstract

In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

Keywords

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Aliha, M.R., Bahmani, A. and Akhondi, S. (2015a), "Determination of mode III fracture toughness for different materials using a new designed test configuration", Mater. Design, 86, 863-871. https://doi.org/10.1016/j.matdes.2015.08.033
  3. Aliha, M.R., Bahmani, A. and Akhondi, S. (2015b), "Numerical analysis of a new mixed mode I/III fracture test specimen", Eng. Fract. Mech., 134, 95-110. https://doi.org/10.1016/j.engfracmech.2014.12.010
  4. Amrollahi, H., Baghbanan, A. and Hashemolhosseini, H. (2011), "Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens", J. Rock Mech. Min. Sci., 48(7), 1123-1134. https://doi.org/10.1016/j.ijrmms.2011.06.015
  5. Atkinson, B.K. (1987), Fracture Mechanics of Rock, Academic Press, London, U.K.
  6. Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disc test", J. Fracture, 18(4), 279-291.
  7. Ayatollahi, M.R. and Alborzi, M.J. (2013), "Rock fracture toughness testing using SCB specimen", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
  8. Banks-Sills, L. and Bortman, Y. (1986), "A mixed mode fracture specimen: Analysis and testing", J. Fracture, 30(3), 181-201. https://doi.org/10.1007/BF00019776
  9. Barker, L.M. (1977), "A simplified method for measuring plane strain fracture toughness", Eng. Fract. Mech., 9(2), 361-369. https://doi.org/10.1016/0013-7944(77)90028-5
  10. Buchholz, F.G., Pirro, P.J.M., Richard, H.A. and Dreyer, K.H. (1987), "Numerical and experimental mixed-mode analysis of a compact tension-shear-specimen", Proceedings of the 4th International Conference Numerical Methods in Fracture Mechanics, Pineridge Press.
  11. Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc- type specimen", Eng. Geol., 66(1), 997.
  12. Chong, K.P. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", J. Fracture, 26(2), 59-62. https://doi.org/10.1007/BF01157555
  13. Chong, K.P., Kuruppu, M.D. and Kuszmaul, J.S. (1987), "Fracture toughness determination of layered materials", Eng. Fract. Mech., 28(1), 43-54. https://doi.org/10.1016/0013-7944(87)90118-4
  14. Cundall, P.A. and Strack, O. (1979), "A discrete element model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  15. Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", J. Rock Mech. Min. Sci., 47(4), 606613.
  16. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solids, 22,1205-1218
  17. Fayed, A.S. (2017), "Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates", Eng. Sol. Mech., 5(1), 61-70.
  18. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  19. Hadei1, R. and Kemeny, J. (2016), "New development to measure mode I fracture toughness in rock", Period. Polytech. Civil Eng., 61(1), 51.
  20. Haeri, H. (2015d), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  21. Haeri, H. (2015e), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  22. Haeri, H. (2015f), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/CAC.2015.16.6.881
  23. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/CAC.2016.17.1.107
  24. Haeri, H., Khaloo, K. and Marji, M.F. (2015b), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arab. J. Geosci., 8(8), 5897-5908 https://doi.org/10.1007/s12517-014-1598-1
  25. Haeri, H., Marji, M.F. and Shahriar, K. (2015a), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5
  26. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/CAC.2016.17.5.639
  27. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strut. Mater., 46(3), 133-148.
  28. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015c), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8, 28412852.
  29. He, M.Y., Cao, H.C. and Evans, A.G. (1990), "Mixed-mode fracture: The four point shear specimen", Acta Metal Mater., 38(5), 839-846. https://doi.org/10.1016/0956-7151(90)90037-H
  30. Huang, J. and Wang, S. (1985), "An experimental investigation concerning the comprehensive fracture toughness of some brittle rocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 99-104. https://doi.org/10.1016/0148-9062(85)92331-9
  31. Isida, M., Imai, R. and Tsuru, H. (1979), "Symmetric plane problems of arbitrarily shaped plates with an edge crack", T. Jap. Soc. Mech. Eng., 45(395), 743-749. https://doi.org/10.1299/kikaia.45.743
  32. ISRM (2007), The Complete ISRM Suggested Methods for Rock Characterization Testing and Monitoring: 1974-2006, International Society for Rock Mechanics, Kozan Ofset, Ankara, Turkey.
  33. Itasca PFC2D (1999), Particle Flow Code in 2 Dimensions, Theory and Background, Itasca Consulting Group, Minneapolis, U.S.A.
  34. Karfakis, M.G. and Akram, M. (1993), "Effects of chemical solutions on rockm fracturing", J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), 1253-1259. https://doi.org/10.1016/0148-9062(93)90104-L
  35. Kataoka, M. and Obara, Y. (2013), "Estimation of fracture toughness of different kinds of rocks under water vapor pressure by SCB test", J. MMIJ, 129, 425-432. https://doi.org/10.2473/journalofmmij.129.425
  36. Kataoka, M., Hashimoto, A., Sato, A. and Obara, Y. (2012), "Fracture toughness of anisotropic rocks by semi-circular bend (SCB) test under water vapor pressure", Proceedings of the 7th ARMS, Seoul, Korea, October.
  37. Kataoka, M., Obara, Y. and Kuruppu, M. (2011), "Estimation of fracture toughness of anisotropic rocks by SCB test and visualization of fracture by means of X-ray CT", Proceedings of the 12th ISRM International Congress, Beijing, China, October.
  38. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
  39. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength concrete", Comput. Concrete, 15(2), 102-111.
  40. Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006
  41. Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100 https://doi.org/10.12989/CAC.2018.22.1.093
  42. Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P. and Funatsu, T. (2014), "ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen", Rock Mech. Rock Eng., 47, 267-274. https://doi.org/10.1007/s00603-013-0422-7
  43. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277 https://doi.org/10.1016/j.conbuildmat.2013.06.046
  44. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/SEM.2015.53.6.1271
  45. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/SEM.2015.53.6.1271
  46. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
  47. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  48. Lim, I.L., Johnston, I.W. and Choi, S.K. (1993), "Stress intensity factors for semi-circular specimens under three-point bending", Eng. Fract. Mech., 44(3), 363-382. https://doi.org/10.1016/0013-7944(93)90030-V
  49. Lim, I.L., Johnston, I.W., Choi, S.K. and Boland, J.N. (1994), "Fracture testing of a soft rock with semi-circular specimens under three-point loading, part 1-mode I", J. Rock Mech. Min. Sci., 31(3), 185-197.
  50. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  51. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  52. Maccagno, T.M. and Knott, J.F. (1989), "The fracture behaviour of PMMA in mixed modes I and II", Eng. Fract. Mech., 34(1), 65-86. https://doi.org/10.1016/0013-7944(89)90243-9
  53. Mahajan, R.V. and Ravi-Chandar, K. (1989), "An experimental investigation of mixed-mode fracture", J. Fracture, 41(4), 235252.
  54. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  55. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra high performance concrete using response surface method", Comput. Concrete, 17(4), 33-39.
  56. Molenar, A.A.A., Scarpas, A., Liu, X. and Erkens, S.M.J.G. (2002), "Semi-circular bending test: Simple but useful?", J. Assoc. Asph. Pav. Technol., 71, 794-815.
  57. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: a review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/CAC.2017.20.2.155
  58. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, 19(4), 429-434. https://doi.org/10.12989/CAC.2017.19.4.429
  59. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  60. Obara, Y., Kuruppu, M. and Kataoka, M. (2010), "Determination of fracture toughness of anisotropic rocks under water vapour pressure by semi-circular bend test", Proceedings of the Mine Planning and Equipment Selection, Victoria, Australia.
  61. Obara, Y., Sasaki, K. and Yoshinaga, T. (2007), "Estimation of fracture toughness of rocks under water vapour pressure by semi-circular bend (SCB) test", J. MMIJ, 123(4-5), 145-151. https://doi.org/10.2473/journalofmmij.123.145
  62. Obara, Y., Yoshinaga, T. and Hirata, A. (2009), "Fracture toughness in mode I and II of rock under water vapour pressure", Proceedings of the ISRM Regional Symposium EUROCK, Cavtat, Italy.
  63. Oliveira, H.L., and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  64. Ouchterlony, F. (1980), A New Core Specimen for the Fracture Toughness Testing of Rock, Swedish Detonic Research Foundation Report, Stockholm, Sweden.
  65. Ouchterlony, F. (1981), Extension of the Compliance and Stress Intensity Formulas for the Single Edge Crack Round Bar in Bending, ASTM STP 745.
  66. Ouchterlony, F. (1986), "Suggested methods for determining the fracture toughness of rock", J. Rock Mech. Min. Sci. Geomech. Abstr., 25(1), 71-96.
  67. Pan, B., Gao, Y. and Zhong, Y, (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4) 167-181.,
  68. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  69. Potyondy, D.O., Cundall, P.A. and Lee, C. (1996), "Modeling of rock using bonded assemblies of circular particles", Proceedings of 2nd North American Rock Mechanics Symposium, Montreal, Vancouver.
  70. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  71. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  72. Sardemir, M., (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/CAC.2016.17.4.489
  73. Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
  74. Sarfarazi, V. and Haeri, H. (2016c), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. https://doi.org/10.12989/CAC.2016.18.2.235
  75. Sarfarazi, V. and Shubert, W. (2016b), "Numerical simulation of tensile failure of concrete in direct, flexural, double punch tensile and ring tests", Period. Polyech. Civil Eng., 2, 1-8.
  76. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  77. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  78. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016a), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  79. Sato, K. (2006), "Fracture toughness evaluation based on tensionsoftening model and its application to hydraulic fracturing", Pure Appl. Geophys., 163(5), 1073-1089. https://doi.org/10.1007/s00024-006-0066-6
  80. Shiryaev, A.M. and Kotkis, A.M. (1982), "Methods for determining fracture toughness of brittle porous materials", Industr. Labor., 48(9), 917-918.
  81. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/CAC.2016.17.6.739
  82. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  83. Singh, R.N. and Sun, G.X. (1990), "A numerical and experimental investigation for determining fracture toughness of welsh limestone", Min. Sci. Technol., 10(1), 61-70. https://doi.org/10.1016/0167-9031(90)90850-R
  84. Suresh, S. and Shih, C.F., Morrone, A. and O'Dowd, N.P. (1990), "Mixed-mode fracture toughness of ceramic materials", J. Am. Ceram. Soc., 73(5), 1257-1267. https://doi.org/10.1111/j.1151-2916.1990.tb05189.x
  85. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156, https://doi.org/10.1016/j.conbuildmat.2015.05.015
  86. Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", J. Rock Mech. Min. Sci., 48(8), 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019
  87. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia - Social and Behavioral Sciences, 198, 2280-2289.
  88. Wang, Q.Z., Feng, F., Ni ,M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469 https://doi.org/10.1016/j.engfracmech.2011.06.004
  89. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181; 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  90. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
  91. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/SEM.2016.57.6.1143
  92. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32 https://doi.org/10.1007/s10704-014-9959-z
  93. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6
  94. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1016/j.ijrmms.2011.10.004