DOI QR코드

DOI QR Code

A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles

  • Pan, Zichao (Department of Bridge Engineering, Tongji University) ;
  • Wang, Dalei (Department of Bridge Engineering, Tongji University) ;
  • Ma, Rujin (Department of Bridge Engineering, Tongji University) ;
  • Chen, Airong (Department of Bridge Engineering, Tongji University)
  • 투고 : 2018.10.10
  • 심사 : 2018.11.30
  • 발행 : 2018.12.25

초록

The percolation of interfacial transition zone (ITZ) in cementitious materials is of great importance to the transport properties and durability issues. This paper presents numerical simulation research on the ITZ percolation threshold of mortar specimens at meso-scale. To simulate the meso-scale model of mortar as realistically as possible, the aggregates are simplified as ellipsoids with arbitrary orientations. Major and minor aspect ratios are defined to represent the global shape characteristics of aggregates. Some algorithms such as the burning algorithm, Dijkstra's algorithm and Connected-Component Labeling (CCL) algorithm are adopted for identification of connected ITZ clusters and percolation detection. The effects of gradation and aspect ratios of aggregates on ITZ percolation threshold are quantitatively studied. The results show that (1) the ITZ percolation threshold is mainly affected by the specific surface area (SSA) of aggregates and shows a global decreasing tendency with an increasing SSA; (2) elongated ellipsoidal particles can effectively bridge isolated ITZ clusters and thus lower the ITZ percolation threshold; (3) as ITZ volume fraction increases, the bridging effect of elongated particles will be less significant, and has only a minor effect on ITZ percolation threshold; (4) it is the ITZ connectivity that is essentially responsible for ITZ percolation threshold, while other factors such as SSA and ITZ volume fraction are only the superficial reasons.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation of China

참고문헌

  1. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudiercabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  2. Bentz, D.P. (2000), "Fibers, percolation, and spalling of highperformance concrete", ACI Mater. J., 97(3), 351-359.
  3. Bentz, D.P., Hwang, J.T.G., Hagwood, C., Garboczi, E.J., Snyder, K.A. and Scrivener, N.B.K.L. (1994), "Interfacial zone percolation in concrete: Effects of interfacial zone thickness and aggregate shape", Mrs Proc., 370, https://doi.org/10.1557/PROC-370-437.
  4. Delagrave, A., Bigas, J.P., Ollivier, J.P., Marchand, J. and Pigeon, M. (1997), "Influence of the interfacial zone on the chloride diffusivity of mortars", Adv. Cement Bas. Mater., 5(3-4), 86-92. https://doi.org/10.1016/S1065-7355(96)00008-9
  5. Diamond, S. (2003), "Percolation due to overlapping ITZs in laboratory mortars? A microstructural evaluation", Cement Concrete Res., 33(7), 949-955. https://doi.org/10.1016/S0008-8846(02)00996-1
  6. Dijkstra, E.W. (1959), "A note on two problems in connexion with graphs", Numerische Mathematik, 1(1), 269-271. https://doi.org/10.1007/BF01386390
  7. Erdogan, S.T. (2005), "Determination of aggregate shape properties using X-ray tomographic methods and the effect of shape on concrete rheology", PhD, The University of Texas at Austin, Austin, US.
  8. Garboczi, E.J., Snyder, K.A., Douglas, J.F. and Thorpe, M.F. (1995), "Geometrical percolation threshold of overlapping ellipsoids", Phys. Rev. E Statist. Phys. Plasmas Fluid. Relat. Interdisc. Top., 52(1), 819-828. https://doi.org/10.1103/PhysRevE.52.819
  9. Hafner, S., Eckardt, S., Luther, T. and Konke, C. (2006), "Mesoscale modeling of concrete: Geometry and numerics", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
  10. King, C.Y. (2008), "Collision detection for ellipsoids and other quadrics", PhD, University of Hong Kong, Hong Kong.
  11. Lee, K.M. and Park, J.H. (2008), "A numerical model for elastic modulus of concrete considering interfacial transition zone", Cement Concrete Res., 38(3), 396-402. https://doi.org/10.1016/j.cemconres.2007.09.019
  12. Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  13. Li, J. (2013), "Percolation thresholds of two-dimensional continuum systems of rectangles", Phys. Rev. E Statist. Nonlin. Soft Mat. Phys., 88(1), 012101. https://doi.org/10.1103/PhysRevE.88.012101
  14. Li, J. and O stling, M. (2016), "Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses", Physica A Statist. Mech. Its Appl., 462, 940-950. https://doi.org/10.1016/j.physa.2016.06.020
  15. Liao, K.Y., Chang, P.K., Peng, Y.N. and Yang, C.C. (2004), "A study on characteristics of interfacial transition zone in concrete", Cement Concrete Res., 34(6), 977-989. https://doi.org/10.1016/j.cemconres.2003.11.019
  16. Lutz, M.P., Monteiro, P.J.M. and Zimmerman, R.W. (1997), "Inhomogeneous interfacial transition zone model for the bulk modulus of mortar", Cement Concrete Res., 27(7), 1113-1122. https://doi.org/10.1016/S0008-8846(97)00086-0
  17. Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Bas. Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
  18. Pan, Z., Ruan, X. and Chen, A. (2014), "Chloride diffusivity of concrete: probabilistic characteristics at meso-scale", Comput. Concrete, 13(2), 187-207. https://doi.org/10.12989/CAC.2014.13.2.187
  19. Pan, Z., Ruan, X. and Chen, A. (2015), "A 2-D numerical research on spatial variability of concrete carbonation depth at mesoscale", Comput. Concrete, 15(2), 231-257. https://doi.org/10.12989/CAC.2015.15.2.231
  20. Prokopski, G. and Halbiniak, J. (2000), "Interfacial transition zone in cementitious materials", Cement Concrete Res., 30(4), 579-583. https://doi.org/10.1016/S0008-8846(00)00210-6
  21. Qian, Z. (2012), "Multiscale modeling of fracture processes in cementitious materials", PhD, Delft University of Technology, Delft, The Netherlands.
  22. Quintanilla, J.A. and Ziff, R.M. (2007), "Asymmetry in the percolation thresholds of fully penetrable disks with two different radii", Phys. Rev. E Statist. Nonlin. Soft Mat. Phys., 76(5), 051115. https://doi.org/10.1103/PhysRevE.76.051115
  23. Rintoul, M.D. and Torquato, S. (1997), "Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model", J. Phys. A: Math. Gen., 30(16), L585. https://doi.org/10.1088/0305-4470/30/16/005
  24. Rypl, D. and Bym, T. (2012), "Geometrical modeling of concrete microstructure for the assessment of ITZ percolation", Acta Polytechnica, 52(6), 1-15.
  25. Samet, H. and Tamminen, M. (1988), "Efficient component labeling of images of arbitrary dimension represented by linear bintrees", IEEE Tran. Pat. Anal. Mach. Intel., 10(4), 579-586. https://doi.org/10.1109/34.3918
  26. Savija, B., Pacheco, J. and Schlangen, E. (2013), "Lattice modeling of chloride diffusion in sound and cracked concrete", Cement Concrete Compos., 42, 30-40. https://doi.org/10.1016/j.cemconcomp.2013.05.003
  27. Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
  28. Shane, J.D., Mason, T.O., Jennings, H.M., Garboczi, E.J. and Bentz, D.P. (2000), "Effect of the interfacial transition zone on the conductivity of Portland cement mortars", J. Am. Ceram. Soc., 83(5), 1137-1144. https://doi.org/10.1111/j.1151-2916.2000.tb01344.x
  29. Wang, W.P., Wang, J.Y. and Kim, M.S. (2001), "An algebraic condition for the separation of two ellipsoids", Comput. Aid. Geometric Des., 18(6), 531-539. https://doi.org/10.1016/S0167-8396(01)00049-8
  30. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  31. Winslow, D.N., Cohen, M.D., Bentz, D.P., Snyder, K.A. and Garboczi, E.J. (1994), "Percolation and pore structure in mortars and concrete", Cement Concrete Res., 24(1), 25-37. https://doi.org/10.1016/0008-8846(94)90079-5
  32. Wong, H.S. and Buenfel, N.R. (2006), "Patch microstructure in cement-based materials: Fact or artefact?", Cement Concrete Res., 36, 990. https://doi.org/10.1016/j.cemconres.2006.02.008
  33. Wu, K., Xu, L., Schutter, G.D., Shi, H. and Ye, G. (2015), "Influence of the interfacial transition zone and interconnection on chloride migration of portland cement mortar", J. Adv. Concr. Technol., 13(3), 169-177. https://doi.org/10.3151/jact.13.169
  34. Xia, W. and Thorpe, M.F. (1988), "Percolation properties of random ellipses", Phys. Rev. A, 38(5), 2650-2656. https://doi.org/10.1103/PhysRevA.38.2650
  35. Yang, C.C. and Su, J.K. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
  36. Yang, R., Gui, Q., Lemarchand, E., Fen-Chong, T. and Li, K. (2015), "Micromechanical modeling of transport properties of cement-based composites: Role of interfacial transition zone and air voids", Tran. Porous Media, 110(3), 591-611. https://doi.org/10.1007/s11242-015-0574-x
  37. Ye, G. (2005), "Percolation of capillary pores in hardening cement pastes", Cement Concrete Res., 35(1), 167-176. https://doi.org/10.1016/j.cemconres.2004.07.033
  38. Zheng, J. and Zhou, X. (2007), "Percolation of ITZs in concrete and effects of attributing factors", J. Mater. Civil Eng., 19(9), 784-790. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(784)
  39. Zheng, X., Iglesias, W. and Palffy-Muhoray, P. (2009), "Distance of closest approach of two arbitrary hard ellipsoids", Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 79(5), 057702. https://doi.org/10.1103/PhysRevE.79.057702
  40. Zheng, X. and Palffy-Muhoray, P. (2007), "Distance of closest approach of two arbitrary hard ellipses in two dimensions", Phys. Rev. E Stat. Nonlin. Soft Mat. Phys., 75(6), 061709. https://doi.org/10.1103/PhysRevE.75.061709

피인용 문헌

  1. Fractal equations to represent optimized grain size distributions used for concrete mix design vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.505