DOI QR코드

DOI QR Code

Molecular Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients Hospitalized in Daejeon between 2008 and 2014 Years

대전지역의 입원환자에서 분리된 Carbapenem 내성 Pseudomonas aeruginosa의 분자역학조사(2008년에서 2014년까지)

  • Cho, Hye Hyun (Department of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
  • 조혜현 (대전과학기술대학교 임상병리과)
  • Received : 2018.08.21
  • Accepted : 2018.09.10
  • Published : 2018.12.31

Abstract

The emergence of carbapenem resistance among Pseudomonas aeruginosa has become an increasing problem worldwide. In particular, $metallo-{\beta}-lactamases$ (MBLs) are responsible for the high-level resistance to carbapenem. Sequence type 235 (ST235) has been found internationally in a multidrug-resistant clone and is involved in the dissemination of genes encoding IMP-6 and VIM-2. This study examined the prevalence of MBLs and the epidemiological relationship in carbapenem-resistant P. aeruginosa (CRPA) isolates obtained from a tertiary hospital in Daejeon, Korea, between March 2008 and June 2014. The antimicrobial susceptibilities were determined using the disk-diffusion method and PCR and DNA sequencing were used to identify the MBL genes. In addition, an epidemiological relationship was investigated by multilocus sequence typing (MLST). Among the 110 CRPA isolates, 32 isolates (29.1%) were MBL-producers; the major type was IMP-6 (29 isolates, 90.6%). VIM-2 was identified in 3 isolates (9.4%) of ST357. IMP-6-producing isolates were multidrug-resistant (MDR) and belonged to ST235. ST235 (55 isolates, 50.0%) was the clone most frequently detected and has gradually emerged during a seven-year period. To prevent the spread of MDR ST235 P. aeruginosa isolates, the current widespread use of carbapenems needs to be curtailed, and novel continuous monitoring strategies should be developed as soon as possible.

최근 P. aeruginosa의 carbapenem에 대한 내성은 전 세계적으로 증가하고 있는 실정이다. 특히 $metallo-{\beta}-lactamases$ (MBLs)는 carbapenem의 고도 내성에 관여하고 있는 것으로 보고되고 있다. 한편, Sequence type 235 (ST235)는 다제내성 클론으로써 국제적으로 보고되고 있으며, IMP-6와 VIM-2 유전자의 확산에도 관여하는 것으로 알려져 있다. 본 연구에서는 2008년 3월부터 2014년 6월까지, 대전지역의 3차 병원에서 분리된 carbapenem 내성 P. aeruginosa에서 MBL 유전자를 분석하고 이에 대한 역학관계를 조사하고자 하였다. 항균제 감수성 양상은 디스크 확산법으로 확인하였고, MBL 유전자의 분석을 위해 PCR과 염기서열분석을 수행하였다. 더불어, 역학 관계를 조사하기 위해 multilocus sequence typing (MLST)를 실시하였다. 110 균주의 carbapenem 내성 P. aeruginosa 중, 32균주(29.1%)가 MBL를 생성하였고, IMP-6 (29균주, 90.6%)가 주요하게 확인되었다. VIM-2는 3균주(9.4%)에서 확인되었으며, 모두 ST357로 확인되었다. IMP-6를 생성하는 P. aeruginosa는 모두 다제내성을 보였고, ST235로 확인되었다. ST235 (55균주, 50.0%)는 가장 높은 비율로 확인된 클론이며 7년 동안 지속적으로 확인되었다. 이러한 다제내성 ST235의 확산을 방지하기 위해, carbapenem의 과도한 사용을 제한하고, 지속적으로 모니터링하는 전략이 개발되어야 할 것으로 사료된다.

Keywords

References

  1. Yoo JS, Yang JW, Kim HM, Byeon J, Kim HS, Yoo JI, et al. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents. 2012;39:300-304. http://doi.org/10.1016/j.ijantimicag.2011.11.018.
  2. Cho HH, Kwon KC, Sung JY, Koo SH. Prevalence and genetic analysis of multidrug-resistant Pseudomonas aeruginosa ST235 isolated from a hospital in Korea, 2008-2012. Ann Clin Lab Sci. 2013;43:414-419.
  3. Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international 'high-risk clones' among metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother. 2015;70:103-110. http://doi.org/ 10.1093/jac/dku339.
  4. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37:745-751. https://doi.org/10.1086/377200
  5. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34:634-640. https://doi.org/10.1086/338782
  6. Rossi Goncalves I, Dantas RCC, Ferreira ML, Batistao DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48:211-217. http://doi.org/10.1016/j.bjm.2016.11.004.
  7. Cho HH, Kwon KC, Kim S, Park Y, Koo SH. Association between biofilm formation and antimicrobial resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Clin Lab Sci. 2018;48:363-368.
  8. Lee JH, Lee GS, Lim KH, Eom YB, Kim SM, Kim JB. Patterns of antimicrobial resistance and genotyping of carbapenemase producing imipenem-nonsusceptible Pseudomonas aeruginosa. Korean J Clin Lab Sci. 2010;42:71-80.
  9. Choi JY, Kwak YG, Yoo H, Lee SO, Kim HB, Han SH, et al. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care units from 2006 to 2013: results from the Korean Nosocomial Infections Surveillance System (KONIS). J Hosp Infect. 2016;92:363-371. http://doi.org/10.1016/j.jhin.2015.12.012.
  10. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011;66:2791-2796. http://doi.org/10.1093/jac/dkr381.
  11. Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, et al. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010;54:346-352. http://doi.org/10.1128/AAC.00824-09.
  12. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011;49:2578-2583. http://doi.org/10.1128/JCM.00102-11.
  13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement, M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
  14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.2012;18:268-281.http://doi.org/10.1111/j.1469-0691.2011.03570.x.
  15. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119-123. http://doi.org/10.1016/j.diagmicrobio.2010.12.002.
  16. Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, et al. FIM-1, a new acquired metallo-${\beta}$-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother. 2013;57:410-416. http://doi.org/10.1128/AAC.01953-12.
  17. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, et al. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J. 2011;52:793-802. http://doi.org/10.3349/ymj.2011.52.5.793.
  18. Huh K, Kim J, Cho SY, Ha YE, Joo EJ, Kang CI, et al. Continuous increase of the antimicrobial resistance among gram-negative pathogens causing bacteremia: a nationwide surveillance study by the Korean Network for Study on Infectious Diseases (KONSID). Diagn Microbiol Infect Dis. 2013;76:477-482. http://doi.org/10.1016/j.diagmicrobio.2013.04.014.
  19. Lee H, Roh KH, Hong SG, Shin HB, Jeong SH, Song W, et al. In vitro synergistic effects of antimicrobial combinations on extensively drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii Isolates. Ann Lab Med. 2016;36:138-144. http://doi.org/10.3343/alm.2016.36.2.138.
  20. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
  21. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440-458. https://doi.org/10.1128/CMR.00001-07
  22. Bae IK, Suh B, Jeong SH, Wang KK, Kim YR, Yong D, et al. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing ${\beta}$-lactamases with extendedspectrum activity. Diagn Microbiol Infect Dis. 2014;79:373-377. http://doi.org/10.1016/j.diagmicrobio.2014.03.007.
  23. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpCbeta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014;40:1556-1561. http://doi.org/10.1016/j.burns.2014.02.010.
  24. Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-beta-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001;45:1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001
  25. Jeong JH, Shin KS, Lee JW, Park EJ, Son SY. Analysis of a novel class 1 integron containing metallo-beta-lactamase gene VIM-2 in Pseudomonas aeruginosa. J Microbiol. 2009;47:753-759. http://doi.org/10.1007/s12275-008-0272-2.
  26. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying $bla_{IMP-6}$ and emergence of $bla_{GES-24}$ and $bla_{IMP-10}$ on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016;60:7216-7223.
  27. Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, et al. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob Agents. 2017;49: 767-769. http://doi.org/10.1016/j.ijantimicag.2017.01.023.
  28. Chen Y, Sun M, Wang M, Lu Y, Yan Z. Dissemination of IMP-6-producing Pseudomonas aeruginosa ST244 in multiple cities in China. Eur J Clin Microbiol Infect Dis. 2014;33:1181-1187. http://doi.org/10.1007/s10096-014-2063-5.
  29. Mano Y, Saga T, Ishii Y, Yoshizumi A, Bonomo RA, Yamaguchi K, et al. Molecular analysis of the integrons of metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa isolates collected by nationwide surveillance programs across Japan. BMC Microbiol. 2015;15:41. http://doi.org/10.1186/s12866-015-0378-8.
  30. Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. Population structure of Pseudomonas aeruginosa from five mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One. 2011;6:e25617. http://doi.org/10.1371/journal.pone.0025617.
  31. Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Fuzi M, et al. Establishing clonal relationships between VIM-1-like metallo-beta-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol. 2006;44:4309-4315. https://doi.org/10.1128/JCM.00817-06
  32. Pournaras S, Kock R, Mossialos D, Mellmann A, Sakellaris V, Stathopoulos C, et al. Detection of a phylogenetically distinct IMP-type metallo-${\beta}$-lactamase, IMP-35, in a CC235 Pseudomonas aeruginosa from the Dutch-German border region (Euregio). J Antimicrob Chemother. 2013;68:1271-1276. http://doi.org/10.1093/jac/dkt004.
  33. McCarthy KL, Jennison A, Wailan AM, Paterson DL. Draft genome sequence of an IMP-7-producing Pseudomonas aeruginosa bloodstream infection isolate from Australia. Genome Announc. 2017;5. http://doi.org/10.1128/genomeA.00596-17.
  34. Hammerum AM, Jakobsen L, Hansen F, Stegger M, Sorensen LA, Andersen PS, et al. Characterisation of an IMP-7-producing ST357 Pseudomonas aeruginosa isolate detected in Denmark using whole genome sequencing. Int J Antimicrob Agents. 2015; 45:200-201. https://doi.org/10.1016/j.ijantimicag.2014.11.002.
  35. Hrabak J, Cervena D, Izdebski R, Duljasz W, Gniadkowski M, Fridrichova M, et al. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-beta-lactamase in central Europe. J Clin Microbiol. 2011;49:474-475. https://doi.org/10.1128/JCM.00684-10.

Cited by

  1. 대전지역의 3차 병원에서 분리된 Carbapenem 내성 Pseudomonas aeruginosa의 병독성 인자 검출 vol.51, pp.3, 2018, https://doi.org/10.15324/kjcls.2019.51.3.301