DOI QR코드

DOI QR Code

The anti-inflammatory influence of fermented soy products containing a fermented Rhus verniciflua extract on lipopolysaccharide (LPS)-treated RAW 264.7 cells

LPS 유도 RAW264.7세포에서 발효 옻 추출물을 함유한 장류의 항염증 효과

  • Lim, Hyun Ji (Industrial Technology Research Group, World Institute of Kimchi) ;
  • Kim, Hyoun-Young (Institute of Sunchang Fermented Soybean Products) ;
  • Lee, Jeong-Mi (Sunchangjuangryu Corp.) ;
  • Kim, Hyun Ju (Industrial Technology Research Group, World Institute of Kimchi)
  • Received : 2018.06.05
  • Accepted : 2018.11.14
  • Published : 2018.12.31

Abstract

Rhus verniciflua (RV) Stokes is a herbal medicine that helps improve blood circulation by stimulating digestion, removing extravasated blood, and raising body temperature. The purpose of this research was to study the anti-inflammatory effect of fermented soy products (FSP) containing a fermented RV (FRV) extract on lipopolysaccharides (LPS)-treatedd RAW 264.7 cells. Treatment with FRV extracts (1, 10, $100{\mu}g/mL$) downregulated nitric oxide (NO) and pro-inflammatory cytokines as compared to the LPS-treated group. Besides, the RV extract treatment suppressed the expression of genes related to pro-inflammatory cytokines, matrixins, inflammation, and apoptosis, while increasing the expression of genes involved in the antioxidant system. Furthermore, RVS extract upregulated antioxidant enzymes, such as glutathione, Cu,Zn-SOD, and catalase without changes in the Nrf2-Keap1 pathway. FSP (doenjang, ganjang) containing FRV extracts (0.1, 1, or $10{\mu}g/mL$) significantly decreased the NO and IL-6 levels in an FSP after 8 weeks of fermentation, but not the expression of genes involved in the inflammation and antioxidant system. These result indicate that an FRV extract and FSPs have a potential application in inflammatory conditions.

본 연구는 LPS 처리 큰포식 세포에서 옻 추출물, 옻 첨가 된장 및 간장 추출물의 항염증 및 산화방지 효과를 확인하였다. 염증 반응은 자극이 가해지면 히스타민, 세로토닌, 프로스타글란딘과 같은 혈관 활성물질에 의해 혈관 투과성이 증대되어 염증을 유발하고 사이토카인, 활성산소종, lysosomal enzyme 등 다양한 매개 인자가 관여한다. 자극에 의한 큰포식세포의 염증반응은 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$와 같은 pro-inflammatory cytokine의 발현이 유도되고, iNOS와 COX-2에 영향을 받는 유전자의 발현을 자극하게 되어 NO 및 $PGE_2$ 등의 염증 인자가 생성된다. 이에 따라 옻 추출물, 옻 첨가 된장 및 간장 추추물의 염증 및 산화방지시스템 관련 유전자 발현을 분석하였다. 그 결과 옻 추출물은 LPS 자극에 의해 생성된 NO, 염증성 사이토카인 및 $PGE_2$의 생성을 유의적으로 감소시켰다. 옻 추출물은 산화방지관련 핵 내 전사인자인 Nrf2 및 관련 유전자의 발현에 영향을 미치지 않았다. 옻첨가 된장 및 간장 추출물은 NO 및 염증성 사이토카인의 생성을 억제하였지만, 염증 및 산화방지관련 유전자의 발현에 영향을 미치지는 않았다.

Keywords

SPGHB5_2018_v50n6_642_f0001.png 이미지

Fig. 1. Effects of the fermented-Rhus verniciflua (FRV) extract on NO levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0002.png 이미지

Fig. 2. Effects of the doenjang (soybean paste) containing fermented-Rhus verniciflua (FRV) extract (DFRV) on NO levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0003.png 이미지

Fig. 3. Effects of the ganjang (soy sauce) containing fermented-Rhus verniciflua (FRV) extract (GFRV) on NO levels in LPSinduced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0004.png 이미지

Fig. 4. Effects of the fermented-Rhus verniciflua (FRV) extract on inflammatory cytokine levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0005.png 이미지

Fig. 5. Effects of the doenjang (soybean paste) containing fermented-Rhus verniciflua (FRV) extract (DFRV) on IL-6 levels in LPSinduced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0006.png 이미지

Fig. 6. Effects of the ganjang (soy sauce) containing fermented-Rhus verniciflua (FRV) extract (GFRV) on IL-6 levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0007.png 이미지

Fig. 7. Effects of the fermented-Rhus verniciflua (FRV) extract on PGE2 levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0008.png 이미지

Fig. 8. Effects of the doenjang (soybean paste) containing fermented-Rhus verniciflua (FRV) extract (DFRV) on PGE2 production levels in LPS-induced RAW 264.7 cells.

SPGHB5_2018_v50n6_642_f0009.png 이미지

Fig. 9. Effects of the ganjang (soy sauce) containing fermented-Rhus verniciflua (FRV) extract (GFRV) on PGE2 production levels in LPS-induced RAW 264.7 cells.

Table 1. Gene list for gene expression

SPGHB5_2018_v50n6_642_t0001.png 이미지

Table 2. Effects of the fermented-Rhus verniciflua (FRV) extract on gene expression in LPS-induced RAW 264.7 cells

SPGHB5_2018_v50n6_642_t0002.png 이미지

References

  1. Ahmed MF. Radical scavenging activities of enzyme-treatment rhus verniciflua stokes via immune-redox on murine macrophage RAW 264.7 cells. MS thesis, Yonsei University, Seoul, Korea (2018)
  2. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta. 1863: 585-597 (2017) https://doi.org/10.1016/j.bbadis.2016.11.005
  3. Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26: 249-261 (2016) https://doi.org/10.1016/j.tcb.2015.12.002
  4. Choi HS, Kim MK, Park HS, Yun SE, Mun SP, Kim JS, Sapkota K, Kim S, Kim TY, Kim SJ. Biological detoxification of lacquer tree (Rhus verniciflua Stokes) stem bark by mushroom species. Food Sci. Biotechnol. 16: 935-942 (2007)
  5. Choi HS, Yeo SH, Jeong ST, Choi JH, Kang JE, Kim MK. Effect of the extracts from fermented-Rhus verniciflua stem bark with Fomitella fraxinea on the growth and enzyme activity of soybean product-fermenting microorganisms. Kor. J. Mycol. 40: 235-243 (2012) https://doi.org/10.4489/KJM.2012.40.4.235
  6. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, Glembotski CC. p38 MAPK and $NF-{\kappa}B$ collaborate to induce interleukin-6 gene expression and release evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem. 275: 23814-23824 (2000) https://doi.org/10.1074/jbc.M909695199
  7. Janeway CA, Travers P, Walport M, Shlomchik MJ, Immunobiology. J. Life Sci. 551-588 (2005)
  8. Jang HS, Kook SH, Son YO, Kim JG, Jeon YM, Jang YS, Choi KC, Kim J, Han SK, Lee KY, Park BK, Cho NP, Lee JC. Flavonoids purified from Rhus verniciflua Stokes activity inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim. Biophys. Acta. 1726: 309-316 (2005) https://doi.org/10.1016/j.bbagen.2005.08.010
  9. Jeon WK, Lee JH, Kim HK, Lee AY, Lee SO, Kim YS, Ryu SY, Kim SY, Lee YJ, Ko BS. Anti-platelet effects of bioactive compounds isolated from the bark of Rhus verniciflua Stokes. J. Ethnopharmacol. 106: 62-69 (2006) https://doi.org/10.1016/j.jep.2005.12.015
  10. Jeong ES. The effect of intake of Rhus verniciflua on acute alcoholinduced hangover and liver injury in Sprague Dawley rat model. MS thesis. Yonsei University, Seoul, Korea (2018)
  11. Jeong MW, Jeong JK, Kim SJ, Park KY. Fermentation characteristics and increased functionality of deonjang prepared with Bamboo salt. J. Korean Soc. Food Sci. Nutr. 42: 1915-1923(2013) https://doi.org/10.3746/jkfn.2013.42.12.1915
  12. Jung CH, Jun CY, Lee S, Park CH, Cho K, Ko SG. Rhus verniciflua Stokes extract: Radical scavenging activities and protective effects on $H_2O_2$-induced cytotoxicity in macrophage RAW 264.7 cell lines. Biol. Pharm. Bull. 29: 1603-1607 (2006) https://doi.org/10.1248/bpb.29.1603
  13. Jung NC. Biological activity of urushiol and flavonoids from Lac tree (Rhus verniciflua Stokes). Ph. D. thesis, Chonnam National University, Gwangju, Korea (1998)
  14. KFDA. Analytical methods of Korean food code. Korea Food & Drug Administration, Cheongwon, Korea (2010)
  15. KFDA. Notice No. 2012-204. Administrative notice of partial revision of the proposed criteria and standards for foods (2012)
  16. KFS. 2007 the investigation of forestry management of Korea. Korea Forest Service. Daejeon, Korea (2008)
  17. Kim JB. Identification of antioxidative component from stem bark of Rhus verniciflua. Korean J. Food Nutr. 16: 60-65 (2003)
  18. Kim SY. Effects of fermented Rhus verniciflua extract on atopic dermatitis in DNCB-induced BALB/c mice. MS thesis, Kyungpook National University, Daegu, Korea (2013)
  19. Kim JS, Kwon YS, Chun WJ, Kim TY, Sun J, Yu CY, Kim MJ. Rhus verniciflua Stokes flavonoid extracts have anti-oxidant, antimicrobial and ${\alpha}$-glucosidase inhibitory effect. Food Chem. 120: 539-543 (2010) https://doi.org/10.1016/j.foodchem.2009.10.051
  20. Kim TH, Lee KM, Kwon KR, Choi SM. A literature study on lacquer poison. J. Korean Pharmacopuncture Institute 5: 159-169 (2002) https://doi.org/10.3831/KPI.2002.5.1.159
  21. Kim SG, Rhyu DY, Kim DK, Ko DH, Kim YK, Lee YM, Jung HJ. Inhibitory effect of heartwood of Rhus verniciflua Stokes on lipid accumulation in 3T3-L1 cells. Korean J. Pharmacogn. 41: 21-25 (2010)
  22. Kwon SH, Lee KB, Im KS, Kim SO, Park KY. Weight reduction and lipid lowering effects of Korean traditional soybean fermented products. J. Korean Soc. Food Sci. Nutr. 35: 1194-1199 (2006) https://doi.org/10.3746/jkfn.2006.35.9.1194
  23. Lee DS. Protective effects and mechanism of butein and sulfuretin derived from Rhus verniciflua against cytokine-induced destruction pancreatic beta cells and glucolipotoxicity. Ph.D. thesis, Wonkwang University, Iksan, Korea (2012)
  24. Lee HC. The history of Korean jangs. Food Sci. Ind. 49: 62-96 (2016)
  25. Lee JD, Huh JE, Jeon GS, Yang HR, Woo HS, Choi DY, Park DS. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. Int. Immunopharmacol. 9: 268-276 (2009) https://doi.org/10.1016/j.intimp.2008.11.005
  26. Lee DS, Jeong GS, Li B, Park H, Kim YC. Anti-inflammatory effects of sulfuretin from Rhus verniciflua Stokes via the induction of heme oxygenase-1 expression in murine macrophages. Int. Immunopharmacol. 10: 850-858 (2010) https://doi.org/10.1016/j.intimp.2010.04.019
  27. Lee JC, Kim J, Lim KT, Jang YS. Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and antiapoptotic properties. Biochim. Biophys. Acta. 1570: 181-191 (2002) https://doi.org/10.1016/S0304-4165(02)00196-4
  28. Lee HJ, Lee KW, Kim KH, Kim HK, Lee HJ. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628-630 (2004)
  29. Li H, Lin L, Feng Y, Zhao M, Li X, Zhu Q, Xiao Z. Enrichment of antioxidants from soy sauce using macroporous resin and identification of 4-ethylguaiacol, catechol, daidzein, and 4-ethylphenol as key small molecule antioxidants in soy sauce. Food Chem. 240: 885-892 (2018) https://doi.org/10.1016/j.foodchem.2017.08.001
  30. Matsui T, Zhu XL, Shiraishi K, Ueki T, Noda Y, Matsumoto K. Antihypertensive effect of salt-free soy sauce, a new fermented seasoning, in spontaneously hypertensive rats. J. Food Sci. 75: H129-H134 (2010) https://doi.org/10.1111/j.1750-3841.2010.01599.x
  31. Moncada. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  32. Moon JE. Anti-oxidative and anti-inflammatory effects of standardized aqueous extract of urushiol free Rhus verniciflua Stokes on lipopolysaccharide-stimulated murine macrophage cell and Wistar rat. MS thesis, Seoul National University of Science and Technology, Seoul, Korea (2014)
  33. Namba T. Coloured illustrations of Wakan-Yaku. Hoikusha publishing Co., Ltd., Osaka, Japan. p. 215 (1980)
  34. Needleman. The discovery and function of COX-2. J. Rheumatol. Suppl. 49: 6-8 (1997)
  35. Park KY, Jung KO. Fermented soybean products as functional foods: Functional properties of doenjang (fermented soybean paste). Asian Funct. Foods 20: 555-596 (2005)
  36. Park KY, Jung GO, Lee KT, Choi JW, Choi MY, Kim GT, Jung JJ, Park HJ. Antimutagenic activity of flavonoids from the heartwood of Rhus verniciflua. J. Ethnopharmacol. 90: 73-79 (2004) https://doi.org/10.1016/j.jep.2003.09.043
  37. Park ES, Lee JY, Park KY. Anticancer effects of black soybean doenjang in HT-29 human colon cancer cells. J. Korean Soc. Food Sci. Nutr. 44: 1270-1278 (2015) https://doi.org/10.3746/jkfn.2015.44.9.1270
  38. Patrono C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 82: 957-964 (2016) https://doi.org/10.1111/bcp.13048
  39. Song JL. Anticancer effects of fermented sesame sauce. Ph. D. thesis, Pusan National University, Busan, Korea (2012)
  40. Sun B, Dwivedi N, Bechtel TJ, Paulsen JL, Muth A, Bawadekar M, Li G, Thompson PR, Shelef MA, Schiffer CA, Weerapana E, Ho IC. Citrullination of $NF-{\kappa}B$ p65 promotes its nuclear localization and TLR-induced expression of $IL-1{\beta}$ and $TNF-{\alpha}$. Sci. Immunol. 2: 1-10 (2017)
  41. Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J. Biol. Chem. 292: 16817-16824 (2017) https://doi.org/10.1074/jbc.R117.800169
  42. Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of JAK-STAT signaling in the immune system. Nat. Immunol. 18: 374-384 (2017) https://doi.org/10.1038/ni.3691