References
- Abrahamsen, B.C. & Faltinsen, O.M., 2011. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations. Physics of Fluids, 23(10), pp.102107. https://doi.org/10.1063/1.3638612
- Abrahamsen, B.C. & Faltinsen, O.M., 2012. The natural frequency of the pressure oscillations inside a water-wave entrapped air pocket on a rigid wall. Journal of Fluids and Structures, 35, pp.200-212. https://doi.org/10.1016/j.jfluidstructs.2012.07.004
- Chen, Z.J. & Przekwas, A.J., 2010. A coupled pressure-based computational method for incompressible/compressible flows. Journal of Computational Physics, 229, pp.9150-9165. https://doi.org/10.1016/j.jcp.2010.08.029
- Hu, C. & Kashiwagi, M., 2004. A CIP-based method for numerical simulations of violent free-surface flows. Journal of Marine Science and Technology, 9, pp.143-157. https://doi.org/10.1007/s00773-004-0180-z
- Hu, X.Y. Adams, N.A. & Iaccarino, G., 2009. On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. Journal of Computational Physics, 228, pp.6572-6589. https://doi.org/10.1016/j.jcp.2009.06.002
- Luo, M. Koh, C.G. Bai, W. & Gao, M., 2016. A particle method for two-phase flows with compressible air pocket. International Journal for Numerical Methods in Engineering, 108, pp.695-721. https://doi.org/10.1002/nme.5230
- Ma, Z.H. Causon, D.M. Qian, L. Mingham, C.G. & Ferrer, P.M., 2016. Numerical investigation of air enclosed wave impacts in a depressurised tank. Ocean Engineering, 123, pp.15-27. https://doi.org/10.1016/j.oceaneng.2016.06.044
- Ma, Z.H. Causon, D.M. Qian, L. Mingham, G. Gu, H.B. & Ferrer, P.M., 2014. A compressible multiphase flow model for violent aerated wave impact problems. Proceedings of The Royal Society A, 470, 20140542.
- Malgarinos, I. Nikolopoulos, N. & Gavaises, M., 2015. Coupling a local adaptive grid refinement technique with an interface sharpening scheme for the simulation of two-phase flow and free-surface flows using VOF methodology. Journal of Computational Physics, 300, pp.732-753. https://doi.org/10.1016/j.jcp.2015.08.004
- Mokrani, C. & Abadie, S., 2016. Conditions for peak pressure stability in VOF simulations of dam break flow impact. Journal of Fluids and Structures, 62, pp.86-103. https://doi.org/10.1016/j.jfluidstructs.2015.12.007
- Nielsen, K., 2003. Numerical prediction of green water loads on ships. Technical University of Denmark: Lyngby, Denmark.
- Park, C.W. & Lee, S., 2008. The effect of water compressibility on a rigid body movement in a water-filled duct driven by compressed air. Journal of the Society of Naval Architects of Korea, 45(4), pp.345-352. https://doi.org/10.3744/SNAK.2008.45.4.345
- Park, J.S. Kim, H.Y. Lee, K.H. Kwon, S.H. Jeon, S.S. & Jung, B.H., 2009. An experimental study on compressibility effect in sloshing phenomenon. Journal of Ocean Engineering and Technology, 23(4), pp.12-18.
- Phi, T.H. & Ahn, H.T., 2011. Air compressibility effect in CFD-based water impact analysis. Journal of the Society of Naval Architects of Korea, 48(6), pp.581-591. https://doi.org/10.3744/SNAK.2011.48.6.581
- Shin, S. Kim, I.C. & Kim, Y.J., 2005. Compressible two-phase flow computations using one-dimensional ALE Godunov method. Journal of the Society of Naval Architects of Korea, 42(4), pp.330-340. https://doi.org/10.3744/SNAK.2005.42.4.330
- Shin, S. Kim, I.C. & Kim, Y.J., 2006. Numerical analysis on spherically symmetric underwater explosion using the ALE Godunov scheme for two-phase flow. Journal of Computational Fluids Engineering, 11(1), pp.29-35.
- Zhou, Z.Q. Kat, J.O. & Buchner, B., 1999. A nonlinear 3D approach to simulate green water dynamics on deck. 7th International Conference on Numerical Ship Hydrodynamics, Nantes, France, 19-22 July 1999.