DOI QR코드

DOI QR Code

전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석

Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD)

  • 남정용 (서울대학교 화학생물공학부) ;
  • 이용규 (서울대학교 화학생물공학부) ;
  • 박건희 (서울대학교 화학생물공학부) ;
  • 이건학 (서울대학교 화학생물공학부) ;
  • 이원보 (서울대학교 화학생물공학부)
  • Nam, Chongyong (School of Chemical and Biological Engineering) ;
  • Lee, Yongkyu (School of Chemical and Biological Engineering) ;
  • Park, Gunhee (School of Chemical and Biological Engineering) ;
  • Lee, Gunhak (School of Chemical and Biological Engineering) ;
  • Lee, Won Bo (School of Chemical and Biological Engineering)
  • 투고 : 2017.10.05
  • 심사 : 2017.10.16
  • 발행 : 2018.02.01

초록

2000년대 이후 대두된 안전, 환경 이슈들로 인해 안전 관리는 더욱 더 중요해졌다. 하지만 안전 관리는 많은 경험적 데이터들을 요구하므로 한계점들이 많다. 안전 분야 중 하나인 배관 안전의 경우 현재 배관을 관리하는 시뮬레이션 프로그램들이 존재하지만, 배관 내부 침식에 대해서는 데이터를 얻기 힘들어 시뮬레이션에 반영이 잘 되어있지 않은 상태이다. 이러한 문제점에서 착안해 본 연구에서는 전산유체역학(CFD)을 이용하여 배관 내부의 곡면에 일어나는 침식을 모사하였고, 계산한 침식 속도를 바탕으로 한계상태함수를 이용하여 배관의 실패 주기를 분석하였다. CFD 대상 배관의 경우 여수 산업 단지에 실제로 운영되고 있는 표본을 사용하였다. DPM (Discrete Phase Model)과 부식 모델을 이용하여 CFD 결과로 $3.093mm{\cdot}yr^{-1}$ 수치의 침식 속도를 얻을 수 있었고, 이 결과를 한계상태함수에 적용한 결과 배관에 누출(leak)을 유발하는데 14.2년, 파열(burst)를 유발하는데 28.2년이라는 실패 주기를 얻어낼 수 있었다. 이러한 과정들을 통해 배관 곡면 침식이 배관 안전 진단에 유효한 실패 모드임을 도출할 수 있었다. 본 연구는 실패 연도를 구할 수 있는 방법론들을 제시하여 데이터의 한계점을 극복하고, 배관 안전 진단에 좀 더 정밀하고 발전된 방법을 제시한 것에 대해 의의를 가진다.

Safety management has become even more important because of the safety and environmental issues that have arisen since the 2000s. However, the safety study requires many empirical data, so there are many limitations. In the case of pipe safety, simulation programs exist, but it is difficult to get data about the pipe internal erosion of the pipe. In this study, the erosion rate of the pipe elbow was simulated using computational fluid dynamics (CFD). Also, the failure period of the pipe was calculated by the limit state function using erosion rate. In the case of CFD pipe, a sample which is actually operated in Yeosu industrial complex was used, and the geometry and mesh formation were rationalized in terms of typical fluid dynamics simulations. Using the Discrete Phase Model (DPM) and the corrosion model, the erosion rate ($3.09227mm{\cdot}yr^{-1}$) was obtained from CFD simulations. As a result of applying the erosion rate to the limit state function, we obtained the pipe failure period value, 14.2 years to trigger a leak and 28.2 years to trigger a burst. Through these processes, we concluded that pipe erosion is one of the major failure modes. In addition to the results, this study has significance for suggesting the methodology of the pipe safety study.

키워드

참고문헌

  1. Moser, A. P. and Folkman, S. L., Buried pipe design, New York: McGraw-Hill., p. 57 (2001).
  2. Roberge, P., Handbook of Corrosion Engineering 2/E. McGraw Hill Professional (2012).
  3. Amirat, A., Mohamed-Chateauneuf, A. and Chaoui, K., "Reli-Ability Assessment of Underground Pipelines Under the Combined Effect of Active Corrosion and Residual Stress," International Journal of Pressure Vessels and Piping, 83(2), 107-117(2006). https://doi.org/10.1016/j.ijpvp.2005.11.004
  4. Ahammed, M., "Probabilistic Estimation of Remaining Life of a Pipeline in the Presence of Active Corrosion Defects," International Journal of Pressure Vessels and Piping, 75(4), 321-329(1998). https://doi.org/10.1016/S0308-0161(98)00006-4
  5. Edwards, J. K., McLaury, B. S. and Shirazi, S. A., "Modeling Solid Particle Erosion in Elbows and Plugged Tees," Transactions-american Society of Mechanical Engineers Journal of Energy Resources Technology, 123(4), 277-284(2001). https://doi.org/10.1115/1.1413773
  6. Bhatti, M. S. and Shah, R. K., "Turbulent and Transition Flow Convective Heat Transfer in Ducts," Handbook of Single-phase Convective Heat Transfer, 4-1(1987).
  7. Bird, R. B., "Transport Phenomena," Applied Mechanics Reviews, 55(1), R1-R4(2002). https://doi.org/10.1115/1.1424298
  8. Mansour, N. N., Kim, J. and Moin, P., "Near-wall k-epsilon Turbulence Modeling," In 6th Symposium on Turbulent Shear Flows, pp. 17-4 (1987).
  9. Launder, B. E. and Spalding, D. B., "The Numerical Computation of Turbulent Flows," Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289(1974). https://doi.org/10.1016/0045-7825(74)90029-2
  10. Zhang, Y., Reuterfors, E. P., McLaury, B. S., Shirazi, S. A. and Rybicki, E. F., "Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows," Wear, 263(1), 330-338(2007). https://doi.org/10.1016/j.wear.2006.12.048
  11. Brown, M., Nessim, M. and Greaves, H., "September Pipeline defect assessment: deterministic and probabilistic considerations," In Second International Conference on Pipeline Technology, Ostend, Belgium, September. (1995).
  12. Oil, C. S. A., "Gas Pipeline Systems, CSA standard Z662-07," Mississauga, Ontario, Canada: Canadian Standard Association(2007).
  13. Lee, Y., Jung, I., Na, J., Park, S., Kshetrimayum, K. S. and Han, C., "Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics," Korean Chemical Engineering Research, 53(6), 818-823(2015). https://doi.org/10.9713/kcer.2015.53.6.818
  14. Setarehshenas, N., Hosseini, S. H., Esfahany, M. N. and Ahmadi, G., "Three-dimensional CFD Study of Conical Spouted Beds Containing Heavy Particles: Design Parameters," Korean Journal of Chemical Engineering, 34(5), 1541-1553(2017). https://doi.org/10.1007/s11814-017-0024-2