DOI QR코드

DOI QR Code

메탄으로부터 촉매와 유전체 장벽 방전 반응기를 활용한 C2 화합물의 합성

Synthesis of C2 Chemicals from Methane in a Dielectric Barrier Discharge (DBD) Plasma Bed

  • 오지환 (서강대학교 화공생명공학과) ;
  • 전종현 (서강대학교 화공생명공학과) ;
  • 정재권 (서강대학교 화공생명공학과) ;
  • 하경수 (서강대학교 화공생명공학과)
  • Oh, Ji-Hwan (Chemical Biomolecular Engineering, Sogang University) ;
  • Jeon, Jong Hyun (Chemical Biomolecular Engineering, Sogang University) ;
  • Jeoung, Jaekwon (Chemical Biomolecular Engineering, Sogang University) ;
  • Ha, Kyoung-Su (Chemical Biomolecular Engineering, Sogang University)
  • 투고 : 2017.06.11
  • 심사 : 2017.08.04
  • 발행 : 2018.02.01

초록

유전체 장벽 방전 반응기에서 규칙적인 메조기공 갖는 촉매를 사용하여 플라즈마 에너지를 이용한 메탄의 직접전환반응 연구를 수행하였다. 촉매는 MgO/OMA (ordered mesoporous alumina), $MgO/{\gamma}-Al_2O_3$$MgO/{\alpha}-Al_2O_3$를 사용하여 반응하였다. Pulse 고전압을 이용한 플라즈마 반응기에서 촉매 MgO/OMA를 사용하였을 때 $C_2$ 화합물의 선택도는 67%로 최고의 성능을 나타내었다. 금속산화물 종류, 규칙적인 메조기공 구조, 알루미나의 상변화 그리고 전원공급방식에 따른 효과를 고려하여 반응기 성능 및 생성물 분포를 비교하였다. BET (Brunauer, Emmett, Teller), X 선 회절, 주사전자현미경, 열 무게 분석으로 촉매의 반응 전후의 특성을 분석하였다.

The direct synthesis of $C_2$ chemical directly from methane was studied by employing catalysts with ordered mesopores in a dielectric barrier discharge plasma reactor. The reaction was carried out using MgO/OMA (ordered mesoporous alumina), $MgO/{\gamma}-Al_2O_3$ and $MgO/{\alpha}-Al_2O_3$ as catalysts. When MgO/OMA was applied, it showed excellent performance in the plasma reactor using pulse-type power supply and the selectivity of $C_2$ chemicals was measured as 67%. The effects of metal oxide type, textural property of support, alumina phase and power supply type on catalytic performance were investigated especially in terms of $C_2$ chemical formation. BET (Brunauer, Emmett, Teller), X-ray diffraction, transmission electron microscope and thermogravimetric analysis were used to investigate the characterization of the catalyst before and after the reaction.

키워드

참고문헌

  1. Wood, D. A., Nwaoha, C. and Towler, B. F., "Gas-to-liquids (GTL): A Review of An Industry Offering Several Routes for Monetizing Natural Gas," Journal of Natural Gas Science and Engineering, 9, 196-208(2012). https://doi.org/10.1016/j.jngse.2012.07.001
  2. Taifan, W. and Baltrusaitis, J., "$CH_4$ Conversion to Value Added Products: Potential, Limitations and Extensions of a Single Step Heterogeneous Catalysis," Applied Catalysis B: Environmental, 198, 525-547(2016). https://doi.org/10.1016/j.apcatb.2016.05.081
  3. Howarth, R. W., Santoro, R. and Ingraffea, A., "Methane and the Greenhouse-gas Footprint of Natural Gas from Shale Formations," Climatic Change, 106(4), 679-690(2011). https://doi.org/10.1007/s10584-011-0061-5
  4. Behroozsarand, A. and Zamaniyan, A., "Simulation and Optimization of an Integrated GTL Process," Journal of Cleaner Production, 142, Part 4, 2315-2327(2017). https://doi.org/10.1016/j.jclepro.2016.11.045
  5. Parshall, G. W., "Industrial Applications of Homogeneous Catalysis. A Review," Journal of Molecular Catalysis, 4(4), 243-270(1978). https://doi.org/10.1016/0304-5102(78)85023-8
  6. Martinez, M., Michelini, M. del C., Rivalta, I., Russo, N. and Sicilia, E., "Acetylene Cyclotrimerization by Early Second-Row Transition Metals in the Gas Phase. A Theoretical Study," Inorganic Chemistry, 44(26), 9807-9816(2005). https://doi.org/10.1021/ic051281k
  7. Hutchings, G. J., Scurrell, M. S. and Woodhouse, J. R., "Oxidative Coupling of Methane Using Oxide Catalysts," Chemical Society Reviews 18(0), 251-283(1989). https://doi.org/10.1039/cs9891800251
  8. Lunsford, J. H., "The Catalytic Oxidative Coupling of Methane," Angewandte Chemie International Edition in English, 34(9), 970-980(1995). https://doi.org/10.1002/anie.199509701
  9. Xu, Y. and Lin, L., "Recent Advances in Methane Dehydro-aromatization Over Transition Metal Ion-modified Zeolite Catalysts Under Non-oxidative Conditions," Applied Catalysis A: General, 188(1-2), 53-67(1999). https://doi.org/10.1016/S0926-860X(99)00210-0
  10. Guo, A., Wu, C., He, P., Luan, Y., Zhao, L., Shan, W., Cheng, W. and Song, H., "Low-temperature and Low-pressure Non-oxidative Activation of Methane for Upgrading Heavy Oil," Catalysis Science Technology, 6(4), 1201-1213(2016). https://doi.org/10.1039/C5CY00947B
  11. Kasinathan, P., Park, S., Choi, W. C., Hwang, Y. K., Chang, J.-S. and Park, Y.-K., "Plasma-Enhanced Methane Direct Conversion over Particle-Size Adjusted $MOx/Al_2O_3$ (M=Ti and Mg) Catalysts," Plasma Chemistry and Plasma Processing 34(6), 1317-1330(2014). https://doi.org/10.1007/s11090-014-9574-9
  12. Pietruszka, B. and Heintze, M., "Methane Conversion at Low Temperature: the Combined Application of Catalysis and Non-equilibrium Plasma," Catalysis Today, 90(1-2), 151-158(2004). https://doi.org/10.1016/j.cattod.2004.04.021
  13. Istadi and Amin, N. A. S., "Co-generation of Synthesis Gas and C2+ Hydrocarbons from Methane and Carbon Dioxide in a Hybrid Catalytic-plasma Reactor: A Review," Fuel, 85(5), 577-592(2006). https://doi.org/10.1016/j.fuel.2005.09.002
  14. Morris, S. M., Fulvio, P. F. and Jaroniec, M., "Ordered Mesoporous Alumina-Supported Metal Oxides," Journal of the American Chemical Society, 130(45), 15210-15216(2008). https://doi.org/10.1021/ja806429q
  15. Yuan, Q., Yin, A.-X., Luo, C., Sun, L.-D., Zhang, Y.-W., Duan, W.-T., Liu, H.-C. and Yan, C.-H., "Facile Synthesis for Ordered Mesoporous ${\gamma}$-Aluminas with High Thermal Stability," Journal of the American Chemical Society, 130(11), 3465-3472(2008). https://doi.org/10.1021/ja0764308
  16. Ashpis, D., Laun, M. and Griebeler, E., "Progress Toward Accurate Measurements of Power Consumption of DBD Plasma Actuators," in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2012).
  17. Lee, H. W., Ryu, S. G., Park, M. K., Park, H. B. and Hwang, K. C., "Decomposition of Trichloroethylene Using a Ferroelectric Packed-Bed Plasma Reactor," Korean J. Chem. Eng., 41(3), 368-376(2003).
  18. Hooshmand, N., Rahimpour, M. R., Jahanmiri, A., Taghvaei, H. and Shirazi, M. M., "Hexadecane Cracking in a Hybrid Catalytic Pulsed Dielectric Barrier Discharge Plasma Reactor," Industrial & Engineering Chemistry Research, 52(12), 4443-4449(2013). https://doi.org/10.1021/ie3022779
  19. Khalifeh, O., Mosallanejad, A., Taghvaei, H., Rahimpour, M. R. and Shariati, A., "Decomposition of Methane to Hydrogen Using Nanosecond Pulsed Plasma Reactor with Different Active Volumes, Voltages and Frequencies," Applied Energy, 169, 585-596(2016). https://doi.org/10.1016/j.apenergy.2016.02.017
  20. Rajendran, M. and Bhattacharya, A. K., "Low-temperature Formation of Alpha Alumina Powders from Carboxylate and Mixed Carboxylate Precursors," Materials Letters, 39(3), 188-195(1999). https://doi.org/10.1016/S0167-577X(99)00004-X
  21. Korf, S. J., Roos, J. A., Veltman, L. J., Ommen, J. G. van and Ross, J. R. H., "Effect of Additives on Lithium Doped Magnesium Oxide Catalysts Used in the Oxidative Coupling of Methane," Applied Catalysis, 56(1), 119-135(1989). https://doi.org/10.1016/S0166-9834(00)80163-3
  22. Koo, K. Y., Roh, H.-S., Seo, Y. T., Seo, D. J., Yoon, W. L. and Park, S. B., "Coke study on MgO-promoted $Ni/Al_2O_3$ Catalyst in Combined $H_2O$ and $CO_2$ Reforming of Methane for Gas to Liquid (GTL) Process," Applied Catalysis A: General 340(2), 183-190(2008). https://doi.org/10.1016/j.apcata.2008.02.009