DOI QR코드

DOI QR Code

제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 투고 : 2017.09.18
  • 심사 : 2017.11.07
  • 발행 : 2018.02.01

초록

제올라이트에 대한 수용액으로부터 brilliant green의 흡착 평형과 동역학 및 열역학 파라미터들을 다양한 초기농도(10-30 mg/L), 접촉시간(1-24 h) 및 흡착온도(298-318 K)를 변수로 하여 회분식 실험을 통하여 연구하였다. 흡착평형 값들은 Langmuir, Freundlich 및 Dubinin-Radushkevich 식으로 해석하였다. 그 결과는 Langmuir 식과 Freundlich 식에 잘 맞았으며, 평가된 Langmuir 무차원 분리계수 값($R_L=0.041{\sim}0.057$)와 Freundlich 상수값(1/n=0.30~0.47)은 제올라이트에 의한 brilliant green의 흡착이 효과적인 공정이 될 수 있음을 나타냈다. Dubinin-Radushkevich 식에 의해 평가된 흡착 에너지값(1.564~1.857 kJ/mol)은 물리흡착에 해당하였다. Brilliant green의 흡착 동력학은 유사이차반응속도식에 잘 맞았으며, 입자내 확산식에 잘 따랐다. 흡착 특성을 평가하기 위하여 주로 활성화에너지, Gibbs 자유에너지, 엔탈피 및 엔트로피와 같은 열역학 파라미터가 계산되었다. Gibbs 자유에너지-10.3~-11.4 kJ/mol), 엔탈피(49.48 kJ/mol) 및 활성화에너지(27.05 kJ/mol)는 흡착이 자발적이고, 흡열 및 물리흡착 공정임을 나타냈다.

Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

키워드

참고문헌

  1. Mane, V. S., Mall, I. D. and Shrivastava, V. C., "Kinetic and Equilibrium Isotherm Studies for the Adsorptive Removal of Brilliant Green Dye from Aqueous Solution by Rice Husk Ash," J. Environ. Manage. 84, 390-400(2007). https://doi.org/10.1016/j.jenvman.2006.06.024
  2. LabChem Inc., "Brilliant Green Safety Data Sheet," (2017).
  3. Mittal, A., Kaur, D. and Mittal, J., "Applicability of Waste Materials-Bottom Ash and Deoiled Soya-as Adsorbents for the Removal and Recovery of a Hazardous Dye, Brilliant Green," J. Colloid Interf. Sci. 326, 8-17(2008). https://doi.org/10.1016/j.jcis.2008.07.005
  4. Nandi, B., Goswami, K. A., Purkait, M. K., "Adsorption Characteristics of Brilliant Green Dye on Kaolin," J. Hazard. Mater. 161, 387-395(2009). https://doi.org/10.1016/j.jhazmat.2008.03.110
  5. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M. and Purkait, M. K., "Novel Acorn based Adsorbent for the Removal of Brilliant Green," Desalination, 281, 226-233(2011). https://doi.org/10.1016/j.desal.2011.07.068
  6. Rehman, M. S. U., Munir, M., Ashfaq, M., Rashid, N., Nazar, M. F.,Danish, M. and Han, J. I., "Adsorption of Brilliant Green Dye from Aqueous Solution onto Red Clay," Chem. Eng. J., 228, 54-62(2013). https://doi.org/10.1016/j.cej.2013.04.094
  7. Salem, M. A., Elsharkawy, R. G., and Hablas, M. F., "Adsorption of Brilliant Green Dye by Polyaniline/Silver Nanocomposite: Kinetic, Equilibrium, and Thermodynamic Studies," Eur. Polym. J., 75, 577-590(2016). https://doi.org/10.1016/j.eurpolymj.2015.12.027
  8. Barun, K. Nandi, Sunil Patel, "Effects of Operational Parameters on the Removal of Brilliant Green Dye from Aqueous Solutions by Electrocoagulation," Arabian J. Chem., 10(2), 2961-2968(2017). https://doi.org/10.1016/j.arabjc.2013.11.032
  9. Wang, L., Liu, W., Wang, X., Chen, Y., Liu, S. and Wang, A., "Research on Adsorption Properties of Basic Brilliant Green Dye Wastewater by Bentonite and Zeolite," IEEE, RSETE, 2011, DOI: 10.1109/RSETE.2011.5965288
  10. Windholz, M., "Merck Index," Merck & Co. Inc., New Jersey, (1983).
  11. LabChem, "Brilliant Green Safety Data Sheet," (2017).
  12. Lee, J. J., "Adsorption Isotherm, Kinetic and Thermodynamic Parameter Studies of acid green 27 Using Activated Carbon," Korean Chem. Eng. Res., 55(4), 514-519(2017). https://doi.org/10.9713/KCER.2017.55.4.514
  13. Mahmoudi, K., Hosni, K., Hamdi, N. and Srasra, E., "Kinetics and Equilibrium Studies on Removal of Methylene Blue and Methyl Orange by Adsorption onto Activated Carbon prepared from Date Pits-A Comparative Study," Korean J. Chem. Eng., 32(2), 274-283(2015). https://doi.org/10.1007/s11814-014-0216-y
  14. Kitakawa, B. H., "Acitvated Carbon Water Treatment Technology and Management," 63, Donghwa Technology, Seoul (2003).
  15. Bhattacharyya, K. G. and Sarma, A., "Adsorption Characteristics of the Dye, Brilliant Green, on Neem Leaf Powder," Dyes and Pigments, 57, 211-222(2003). https://doi.org/10.1016/S0143-7208(03)00009-3
  16. Kismir, Y. and Aroguz, A. Z., "Adsorption Characteristics of the Hazardous Dye Brilliant Green on Saklikent Mud," Chem. Eng. J., 172, 199-206(2011). https://doi.org/10.1016/j.cej.2011.05.090
  17. Nuithitikul, K., Srikhun, S. and Hirunpraditkoon, "Kinetics and Equilibrium Adsorption of Basic Green 4 Dye on Activated Carbon derived from Durian Peel: Effects of Pyrolysis and Post-treatment Conditions," J. Taiwan Inst. Chem. Eng., 41, 591-598(2010). https://doi.org/10.1016/j.jtice.2010.01.007
  18. Mane, V. S. and Babu, P. V. V., "Studies on the Adsorption of Brilliant Green Dye from Aqueous Solution onto Low-Cost NaOH treated Saw Dust," Desalination, 273, 321-329(2011). https://doi.org/10.1016/j.desal.2011.01.049
  19. Nethaji, S., Sivasamy, A., Thennarasu, G. and Saravanan, S., "Adsorption of Malachite Green Dye onto Activated Carbon derived from Borassus Aethiopum Flower Biomass," J. Hazard. Mater., 181, 271-280(2010). https://doi.org/10.1016/j.jhazmat.2010.05.008
  20. Monika, J., Garg, V. and Kadirvelu, K., "Chromium (VI) Removal from Aqueous Solution, Using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372(2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  21. Lee, J. J., "Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon," Appl. Chem. Eng., 28(2), 206-213(2017). https://doi.org/10.14478/ace.2017.1132
  22. Grecel, O., Ozcan, A., Ozcan, A. S. and Grecel, H. F., "Preparation of Activated Carbon from a Renewable Bio-plant of Euphorbia Rigidia by $H_{2}SO_{4}$ Activation and Its Desorption Behavior in Aqueous Solutions," Appl. Surf. Sci., 253, 4843-4852(2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  23. Onal, Y., BaSar, C. A., Eren, D., Onalzdemir, C. S. and Depci, T. "Adsorption Kinetics of Malachite Green onto Activated Carbon prepared from Tuncbilek Lignite," J. Hazard. Mater. B128, 150-157(2006).
  24. Nollet, H., Roels, M., Lutgen, P. V., Meeren, P. and Verstraete, W., "Removal of PCBs from Wastewater Using Fly Ash," Chemosphere, 53, 655(2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  25. Gemea, A. H., Mansour, I. A., El-Sharkawy, R. G., Zaki, A. B., "Kinetics and Mechanism of the Heterogeneous Catalyzed Oxidative Degradation of Indigo Carmine," J. Mol. Catal. Chem. 193(1-2), 109-120(2003). https://doi.org/10.1016/S1381-1169(02)00477-6
  26. Mital, A., "Adsorption Kinetics of Removal of a Toxic Dye, Malachite Green, from Wastewater by Using Hen Feathers," J. Hazard. Mater. B133, 196-201(2006).
  27. Peng, X. HU, X. Fu, D. and Lam, F. L. Y., "Adsorption Removal of Acid Black 1 from Aqueous Solution Using Ordered Mesoporous Carbon," Appl. Surf. Sci., 294, 71-80(2014). https://doi.org/10.1016/j.apsusc.2013.11.157