DOI QR코드

DOI QR Code

Failure analysis of ribbed cross-laminated timber plates

  • Lavrencic, Marko (University of Ljubljana, Faculty of Civil and Geodetic Engineering) ;
  • Brank, Bostjan (University of Ljubljana, Faculty of Civil and Geodetic Engineering)
  • Received : 2017.05.09
  • Accepted : 2017.06.24
  • Published : 2018.02.25

Abstract

The process of material failure i.e. cracks development and their propagation in an experiment related to the bending collapse of cross laminated timber plate with ribs is described. Numerical simulation of such an experiment by the nonlinear finite element method is presented. The numerical model is based on Hashin failure criteria, initially developed for unidirectional composites, and on material softening concept applied by the smeared crack approach. It is shown that such a numerical model can be used for an estimation of the limit load and the limit displacement of a cross laminated timber ribbed plate.

Keywords

Acknowledgement

Supported by : WoodWisdom-Net+, Ministry of Science, Higher Education and Sport

References

  1. Abaqus (2016), Abaqus Manuals, Dassault Systemes, Providence, RI, U.S.A.
  2. Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G. and Thiel, A. (2016), "Cross laminated timber (CLT): Overview and development", Eur. J. Wood Prod. 74, 331-351. https://doi.org/10.1007/s00107-015-0999-5
  3. Brank, B. and Carrera, E. (2000), "Multilayered shell finite element with interlaminar continuous shear stresses: A refinement of the Reissner-Mindlin formulation", J. Numer. Meth. Eng., 48, 843-874. https://doi.org/10.1002/(SICI)1097-0207(20000630)48:6<843::AID-NME903>3.0.CO;2-E
  4. Brank, B. and Makarovic, M. (1998), "On non-linear response of polyester tanks: Comparison of experimental and numerical results", Proceedings of the NATO Advanced Research Workshop on Multilayered and Fibre-Reinforced Composites: Problems and Prospect, Kiev, Ukraine, June.
  5. Brank, B., Peric, D. and Damjanic, F.B. (1997), "On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element", J. Numer. Meth. Eng., 40, 689-726. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7
  6. Coureau, J.L., Morel, S. and Dourado, N. (2013), "Cohesive zone model and quasibrittle failure of wood: A new light on the adapted specimen geometries for fracture tests", Eng. Fract. Mech., 109, 328-340. https://doi.org/10.1016/j.engfracmech.2013.02.025
  7. Dourado, N., Morel, S., De Moura, M.F.S.F., Valentin, G. and Morais, J. (2008), "Comparison of fracture properties of two wood species through cohesive crack simulations", Compos.: Part A, 39, 415-427. https://doi.org/10.1016/j.compositesa.2007.08.025
  8. Dujc, J., Brank, B. and Ibrahimbegovic, A. (2013), "Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids", J. Numer. Meth. Eng., 94, 1075-1098. https://doi.org/10.1002/nme.4475
  9. Dujc, J., Brank, B. and Ibrahimbegovic A. (2010), "Quadrilateral finite element with embedded strong discontinuity for failure analysis of solids", Comput. Model. Eng. Sci., 69, 223-259.
  10. Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mech. Eng., 199, 1371-1385. https://doi.org/10.1016/j.cma.2009.09.003
  11. EN 408:2010+A1 (2012), Timber Structures-Structural Timber and Glued Laminated Timber-Determination of Some Physical and Mechanical Properties, European Committee for Standardization (CEN).
  12. Fruhmann, K., Reitererz, A., Tschegg, E.K. and Stanzl-Tschegg, S.S. (2002), "Fracture characteristics of wood under mode I, mode II and mode III loading", Philosoph. Mag. A, 82, 3289-3298. https://doi.org/10.1080/01418610208240441
  13. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47, 329-334. https://doi.org/10.1115/1.3153664
  14. Hashin, Z. (1981), "Fatigue failure criteria for unidirectional fiber composites", J. Appl. Mech., 48, 846-852. https://doi.org/10.1115/1.3157744
  15. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Springer Netherlands, Dordrecht, the Netherlands.
  16. Jukic, M., Brank, B. and Ibrahimbegovic, A. (2013), "Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames", Eng. Struct., 50, 115-125. https://doi.org/10.1016/j.engstruct.2012.07.028
  17. Machek, L., Militz, H. and Sierra-Alvarez, R. (2001), "The use of an acoustic technique to assess wood decay in laboratory soil-bed tests", Wood Sci. Technol., 34, 467-472. https://doi.org/10.1007/s002260000070
  18. O NORM B 1995-1-1: Eurocode 5 (2015), Design of Timber Structures-Part 1-1: General-Common rules and Rules for Buildings-National Specifications for the Implementation of O NORM EN 1995-1-1, National Comments and National Supplements, Austrian Standards Institute.
  19. O NORM EN 338:2009-10 (2009), Structural Timber-Strength Classes, Austrian Standards Institute.
  20. Piculin, S., Nicklisch, F. and Brank, B. (2016), "Numerical and experimental tests on adhesive bond behaviour in timber-glass walls", J. Adhes. Adhes., 70, 204-217. https://doi.org/10.1016/j.ijadhadh.2016.06.012
  21. Qiu, L.P., Zhu, E.C. and Van De Kuilen, J.W.G. (2014), "Modeling crack propagation in wood by extended finite element method", Eur. J. Wood Prod., 72, 273-283. https://doi.org/10.1007/s00107-013-0773-5
  22. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, U.S.A.
  23. Reiterer, A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (2000), "Mode I fracture and acoustic emission of softwood and hardwood", Wood Sci. Technol., 34, 417-430. https://doi.org/10.1007/s002260000056
  24. Schmidt, J. and Kaliske, M. (2009), "Models for numerical failure analysis of wooden structures", Eng. Struct., 31, 571-579. https://doi.org/10.1016/j.engstruct.2008.11.001
  25. Stanic, A. and Brank, B. (2017), "A path-following method for elasto-plastic solids and structures based on control of plastic dissipation and plastic work", Fin. Elem. Analy. Des., 123, 1-8. https://doi.org/10.1016/j.finel.2016.09.005
  26. Stanic, A., Brank, B. and Korelc, J. (2016), "On path-following methods for structural failure problems", Comput. Mech., 58, 281-306. https://doi.org/10.1007/s00466-016-1294-y
  27. Stanic, A., Hudobivnik, B. and Brank, B. (2016), "Economic-design optimization of cross laminated timber plates with ribs", Compos. Struct., 154, 527-537. https://doi.org/10.1016/j.compstruct.2016.07.072
  28. Zisi, N., Aicher, S. and Dill-Langer, G. (2016), Testing of Specimen 6.1.a, Internal HCLTP Report, MPA, Stuttgart, Germany.

Cited by

  1. Stiffness of hybrid systems with and without pre-stressing vol.9, pp.2, 2020, https://doi.org/10.12989/csm.2020.9.2.147