DOI QR코드

DOI QR Code

타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성

Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder

  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 조권구 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소)
  • Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 투고 : 2018.01.27
  • 심사 : 2018.02.21
  • 발행 : 2018.02.28

초록

One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

키워드

참고문헌

  1. J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng and I. C. Chen: J. Cryst. Growth, 281 (2005) 384. https://doi.org/10.1016/j.jcrysgro.2005.04.018
  2. H. W. Peng and J. B. Li: J. Phys. Chem. C, 112 (2008) 20142.
  3. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang: Appl. Phys. Lett., 82 (2003) 281. https://doi.org/10.1063/1.1537518
  4. A. Hu, C. Cheng, X. Li, J. Jiang, R. Ding, J. Zhu, F. Wu, J. Liu and X. Huang: Nanoscale Res. Lett., 6 (2011) 2.
  5. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen and S. X. Wang: Appl. Phys. Lett., 78 (2001) 1125. https://doi.org/10.1063/1.1350959
  6. S. K. Pradhan, P. J. Peucroft, F. Yang and A. Dozier: J. Cryst. Growth, 256 (2003) 83. https://doi.org/10.1016/S0022-0248(03)01339-3
  7. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang and S. Chen: Appl. Mater. Interfac., 2 (2010) 3263. https://doi.org/10.1021/am100707h
  8. C. S. Rout, G. U. Kulkarni and C. N. R. Rao: J. Phys. D.: Appl. Phys., 40 (2007) 2777. https://doi.org/10.1088/0022-3727/40/9/016
  9. W. Biao, Z. Y. Dong, H. L. Ming, C. J. Sheng, G. F. Li, L. Yun and W. L. Jun: Chinese Sci. Bull., 55 (2010) 228.
  10. O. Landau, A. Rothschild and E. Zussman: Chem. Mater., 21 (2009) 9. https://doi.org/10.1021/cm802498c
  11. L. Francioso, A. M. Taurino, A. Forleo and P. Siciliano: Sensor Actuat. B-Chem., 130 (2008) 70.
  12. M. M. Arafat, A. S. M. A. Haseeb and S. A. Akbar: Ceram. Int., 41 (2015) 4401. https://doi.org/10.1016/j.ceramint.2014.11.130
  13. B. Liu and E. S. Aydil: J. Am. Chem. Soc., 131 (2009) 3985.
  14. H. Wang, Y. Bai, Q. Wu, W. Zhou, H. Zhang, J. Li and L. Guo: Phys. Chem. Chem. Phys., 13 (2011) 7008.
  15. Q. Jiang, X. Sheng, Y. Li, X. Feng and T. Xu: Chem. Commun., 50 (2014) 14720. https://doi.org/10.1039/C4CC07367C
  16. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid and Y. Wei: J. Am. CHem. Soc., 130 (2008) 5036. https://doi.org/10.1021/ja800176s
  17. S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and L. Palmisano: J. Am. Chem. Soc., 130 (2008) 1568. https://doi.org/10.1021/ja709989e
  18. J. M. Wu, H. C. Shih and W. T. Wu: Nanotechnology, 17 (2006) 105. https://doi.org/10.1088/0957-4484/17/1/017
  19. J. S. Chen and X. W. Lou: J. Power Sources, 195 (2010) 2905. https://doi.org/10.1016/j.jpowsour.2009.11.040
  20. Y. Q. Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. Ikuhara and L. J. Wan: J. Am. Chem. Soc., 134 (2012) 7874.
  21. H. Lee, S. Dregia, S. Akbar and M. Alhoshan: J. Nanomater., 2010 (2010) 7.
  22. B. J. Hansen, G. Lu and J. Chen: J. Nanomater., 2008 (2008) 7.
  23. R. Mema, L. Yuan, Q. Du, Y. Wang and G. Zhou: Chem. Phys. Lett., 512 (2011) 87. https://doi.org/10.1016/j.cplett.2011.07.012
  24. A. Kumar, A. K. Srivastava, P. Tiwari and R. V. Nandedkar: J. Phys.: Condens. Mat. 16 (2004) 8531. https://doi.org/10.1088/0953-8984/16/47/007
  25. M. M. Arafat, A. S. M. A. Haseeb, B. Dinan and S. A. Akbar: Ceram. Int., 39 (2013) 6517.