DOI QR코드

DOI QR Code

CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry

  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 류도형 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.01.11
  • 심사 : 2018.01.23
  • 발행 : 2018.02.28

초록

Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

키워드

참고문헌

  1. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. L. P. Lefebvre, J. Banhart and D. C. Dunand: Adv. Eng. Mater., 10 (2008) 775. https://doi.org/10.1002/adem.200800241
  3. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  4. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  5. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955
  6. S. Deville: Adv. Eng. Mater., 10 (2008) 155. https://doi.org/10.1002/adem.200700270
  7. B. H. Yoon, E. J. Lee, H. E. Kim and Y. H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  8. A. I. C. Ramos and D. C. Dunand: Metals, 2 (2012) 265. https://doi.org/10.3390/met2030265
  9. J. H. Kim, S. T. Oh and C. Y. Hyun: J. Korean Powder Metall. Inst., 23 (2016) 49. https://doi.org/10.4150/KPMI.2016.23.1.49
  10. D. C. C. Lam, F. F. Lange and A. G. Evans: J. Am. Ceram. Soc., 77 (1994) 2113.
  11. S. T. Oh, K. I. Tajima, M. Ando and T. Ohji: J. Am. Ceram. Soc., 83 (2000) 1314.
  12. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Sanbre: Talanta, 50 (1999) 445. https://doi.org/10.1016/S0039-9140(99)00129-0
  13. M. Wiśniewska: Powder Technol., 198 (2010) 258. https://doi.org/10.1016/j.powtec.2009.11.016
  14. G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709.
  15. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  16. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.