DOI QR코드

DOI QR Code

Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams

합성개구레이더 인공위성 영상을 활용한 중소규모 하천에서의 유량 추정

  • Seo, Minji (Department of Civil Engineering, Hongik University) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University) ;
  • Ahmad, Waqas (Department of Civil Engineering, Hongik University) ;
  • Cha, Jun-Ho (Han River Flood Control Office, Ministry of Environment)
  • 서민지 (홍익대학교 토목공학과) ;
  • 김동균 (홍익대학교 토목공학과) ;
  • ;
  • 차준호 (한강홍수통제소 수자원정보센터)
  • Received : 2018.08.02
  • Accepted : 2018.10.15
  • Published : 2018.12.31

Abstract

This study suggests a novel approach of estimating stream flow discharge using the Synthetic Aperture Radar (SAR) images taken from 2015 to 2017 by European Space Agency Sentinel-1 satellite. Fifteen small to medium sized rivers in the Han River basin were selected as study area, and the SAR satellite images and flow data from water level and flow observation system operated by the Korea Institute of Hydrological Survey were used for model construction. First, we apply the histogram matching technique to 12 SAR images that have undergone various preprocessing processes for error correction to make the brightness distribution of the images the same. Then, the flow estimation model was constructed by deriving the relationship between the area of the stream water body extracted using the threshold classification method and the in-situ flow data. As a result, we could construct a power function type flow estimation model at the fourteen study areas except for one station. The minimum, the mean, and the maximum coefficient of determination ($R^2$) of the models of at fourteen study areas were 0.30, 0.80, and 0.99, respectively.

본 연구에서는 2015년에서 2017년 사이에 유럽항공우주국 Sentinel-1 위성이 촬영한 Synthetic Aperture Radar (SAR) 영상을 활용하여 한강 유역 내 하천의 유량을 추정하는 모형을 개발하였다. 한강 유역 내 15개 중소규모 하천을 연구지역으로 선정하였으며 SAR 인공위성 영상 자료와 수위 및 유량관측소에서 산정한 유량 자료를 모형 구축을 위하여 사용하였다. 우선, 오류 보정을 위해 다양한 전처리 과정을 거친 12장의 SAR 영상을 히스토그램 매칭 기법을 적용하여 이미지의 밝기 분포를 동일하게 만들었다. 이후 임계치 분류방식을 사용하여 추출된 하천 수체의 면적과 지상 관측유량자료와의 관계식을 도출하여 유량추정모형을 구축하였다. 그 결과, 1개소를 제외한 14개 관측소에서 인공위성에서 추출한 하천 면적을 입력 자료로 하는 멱함수 형태의 유량추정모형을 구축할 수 있었다. 14개 관측소의 최소, 평균, 최대 결정 계수($R^2$)는 0.3, 0.8, 0.99로 나타났다.

Keywords

SJOHCI_2018_v51n12_1181_f0001.png 이미지

Fig. 1. Study area of the Han river basin, the blue lines represent the river and the white circles represent the gauge station.(a) Gangchon Bridge, (b) Geoun Bridge, (c) Gurun Bbridge, (d) Daegok Bridge, (e) Daeseongri, (f) Bongsang Bridge, (g) Biryong Bridge, (h) Sarang Bridge, (i) Anheung Bridge, (j) Yeongwol Bridge, (k) Eunhyun Bridge, (l) Changhyun Bridge, (m) Jijeong Bridge, (n) Palgoe Bridge, (o) Paldang Bridge

SJOHCI_2018_v51n12_1181_f0002.png 이미지

Fig. 2. Schematic showing the overall methodology

SJOHCI_2018_v51n12_1181_f0003.png 이미지

Fig. 3. Algorithm of finding an optimal target area and a maximum correlation coefficient

SJOHCI_2018_v51n12_1181_f0004.png 이미지

Fig. 5. Relationship between the average side slope and coefficient of determination for the 15 gauge stations

SJOHCI_2018_v51n12_1181_f0005.png 이미지

Fig. 6. A side slope of the cross section at the Sarang bridge and the Daegok bridge

SJOHCI_2018_v51n12_1181_f0006.png 이미지

Fig. 7. Sentinel-1 satellite imagery of (a) Anheung Bridge where water surface area-flow discharge relationship could not be derived and that of (b) Sarang Bridge where water surface area-flow discharge relationship could be clearly derived

SJOHCI_2018_v51n12_1181_f0007.png 이미지

Fig. 8. Relationship between the extracted water surface area (x) and the flow discharge (y) for the 15 gauge stations. The blue triangles represent data for constructing a model, The red lines represent a discharge estimation model and the circles represent validation data

SJOHCI_2018_v51n12_1181_f0008.png 이미지

Fig. 9. Cross section at the Daeseongri, Gapyeonggun. The green line represents maximum water level and the blue line represents minimum water level

SJOHCI_2018_v51n12_1181_f0009.png 이미지

Fig. 10. Relationship between discharge estimated from remotely sensed water surface area and the observed in situ discharge for the 14 gauged stations

SJOHCI_2018_v51n12_1181_f0010.png 이미지

Fig. 4. (a) Target areas for case 1 and case 2 at Sarang Bridge; (b) Correlation coefficient between the water area and discharge varying with different water extraction threshold. Two different curves correspond to different cases of target area (two polygons shown in Fig. 4(a)).; (c) Relationship between the extracted water surface area and discharge based on the target area case 1; (d) Relationship between the extracted water surface area and discharge based on the target area case 2

Table 1. Satellites observing river hydraulic variables currently in operation or in the future

SJOHCI_2018_v51n12_1181_t0001.png 이미지

Table 2. Characteristics of Sentinel-1 IW mode

SJOHCI_2018_v51n12_1181_t0002.png 이미지

Table 3. Correlation equation in water surface area and discharge

SJOHCI_2018_v51n12_1181_t0003.png 이미지

References

  1. Ad Hoc Group, Vorosmarty, C., Askew, A., Grabs, W., Barry, R., Birkett, C., Doll, P., Goodison, B., Hall, A., and Jenne, R. (2001). "Global water data: A newly endangered species." Eos, Transactions American Geophysical Union, Wiley Online Library, Vol. 82, No. 5, pp. 54-58.
  2. Alsdorf, D. E., and Lettenmaier, D. P. (2003). "Geophysics. Tracking fresh water from space." Science (New York, N.Y.), Vol. 301, No. 5639, pp. 1491-1494. https://doi.org/10.1126/science.1089802
  3. BARRETT, E. C., HERSCHY, R. W., and STEWART, J. B. (1988). "Satellite remote sensing requirements for hydrology and water management from the mid-1990s, in relation to the Columbus Programme of the European Space Agency." Hydrological sciences journal, Taylor & Francis, Vol. 33, No. 1, pp. 1-17. https://doi.org/10.1080/02626668809491218
  4. Biancamaria, S., Frappart, F., Leleu, A., Marieu, V., Blumstein, D., Desjonqueres, J., Boy, F., Sottolichio, A., and Valle-Levinson, A. (2017). "Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River." Advances in Space Research, Elsevier, Vol. 59, No. 1, pp. 128-146. https://doi.org/10.1016/j.asr.2016.10.008
  5. Birkett, C. (1994). "Radar altimetry: a new concept in monitoring lake level changes." Eos, Transactions American Geophysical Union, Wiley Online Library, Vol. 75, No. 24, pp. 273-275. https://doi.org/10.1029/94EO00944
  6. Birkett, C. M. (1998). "Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands." Water Resources Research, Wiley Online Library, Vol. 34, No. 5, pp. 1223-1239. https://doi.org/10.1029/98WR00124
  7. Bjerklie, D. M., Dingman, S. L., Vorosmarty, C. J., Bolster, C. H., and Congalton, R. G. (2003). "Evaluating the potential for measuring river discharge from space." Journal of Hydrology, Elsevier, Vol. 278, No. 1-4, pp. 17-38. https://doi.org/10.1016/S0022-1694(03)00129-X
  8. Bjerklie, D. M., Moller, D., Smith, L. C., and Dingman, S. L. (2005). "Estimating discharge in rivers using remotely sensed hydraulic information." Journal of Hydrology, Elsevier, Vol. 309, No. 1-4, pp. 191-209. https://doi.org/10.1016/j.jhydrol.2004.11.022
  9. Bourke, P. (2011). Histogram Matching. accessed 20 January 2018, .
  10. Choi, H. H., and Lee, H. S. (2012). "Assessment of conceptual rainfall runoff models for regionalisation at miho catchment." Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 12, No. 1, pp. 193-203. https://doi.org/10.9798/KOSHAM.2012.12.1.193
  11. Chu, Y., Li, J., Jiang, W., Zou, X., Fan, C., Xu, X., and Dadzie, I. (2008). "Monitoring Level Fluctuations of the Lakes in the Yangtze River Basin from Radar Altimetry." Terrestrial, Atmospheric & Oceanic Sciences, Vol. 19.
  12. Coe, M. T., and Birkett, C. M. (2004). "Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin. " Water Resources Research, Wiley Online Library, Vol. 40, No. 10.
  13. Da Silva, J. S., Calmant, S., Seyler, F., Rotunno Filho, O. C., Cochonneau, G., and Mansur, W. J. (2010). "Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions." Remote Sensing of Environment, Elsevier, Vol. 114, No. 10, pp. 2160-2181. https://doi.org/10.1016/j.rse.2010.04.020
  14. de Oliveira Campos, I., Mercier, F., Maheu, C., Cochonneau, G., Kosuth, P., Blitzkow, D., and Cazenave, A. (2001). "Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin." Comptes Rendus de l'Academie des Sciences-Series IIA-Earth and Planetary Science, Elsevier, Vol. 333, No. 10, pp. 633-643. https://doi.org/10.1016/S1251-8050(01)01688-3
  15. Dellepiane, S. G., and Angiati, E. (2012). "A new method for cross-normalization and multitemporal visualization of SAR images for the detection of flooded areas." IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 50, No. 7, pp. 2765-2779. https://doi.org/10.1109/TGRS.2011.2174999
  16. Desnos, Y., Borgeaud, M., Doherty, M., Rast, M., and Liebig, V. (2014). "The European Space Agency's Earth Observation Program." IEEE Geoscience and Remote Sensing Magazine, IEEE, Vol. 2, No. 2, pp. 37-46. https://doi.org/10.1109/MGRS.2014.2319270
  17. Doll, P., Jimenez-Cisneros, B., Oki, T., Arnell, N., Benito, G., Cogley, J., Jiang, T., Kundzewicz, Z., Mwakalila, S., and Nishijima, A. (2015). "Integrating risks of climate change into water management." Hydrological Sciences Journal, Taylor & Francis, Vol. 60, No. 1, pp. 4-13. https://doi.org/10.1080/02626667.2014.967250
  18. European Space Agency (2013). "Sentinel-1 User Handbook.".
  19. Frappart, F., Calmant, S., Cauhope, M., Seyler, F., and Cazenave, A. (2006). "Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin." Remote Sensing of Environment, Elsevier, Vol. 100, No. 2, pp. 252-264. https://doi.org/10.1016/j.rse.2005.10.027
  20. Fu, L., and Ubelmann, C. (2014). "On the transition from profile altimeter to swath altimeter for observing global ocean surface topography." Journal of Atmospheric and Oceanic Technology, Vol. 31, No. 2, pp. 560-568. https://doi.org/10.1175/JTECH-D-13-00109.1
  21. Govindasamy, A., Briaud, J., Kim, D., Olivera, F., Gardoni, P., and Delphia, J. (2012). "Observation method for estimating future scour depth at existing bridges." Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, Vol. 139, No. 7, pp. 1165-1175. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000838
  22. Hannah, D. M., Demuth, S., van Lanen, H. A., Looser, U., Prudhomme, C., Rees, G., Stahl, K., and Tallaksen, L. M. (2011). "Large‐scale river flow archives: importance, current status and future needs." Hydrological Processes, Wiley Online Library, Vol. 25, No. 7, pp. 1191-1200. https://doi.org/10.1002/hyp.7794
  23. Helmer, E., and Ruefenacht, B. (2005). "Cloud-free satellite image mosaics with regression trees and histogram matching." Photogrammetric Engineering & Remote Sensing, American Society for Photogrammetry and Remote Sensing, Vol. 71, No. 9, pp. 1079-1089. https://doi.org/10.14358/PERS.71.9.1079
  24. Homer, C. G., Ramsey, R. D., Edwards Jr, T. C., and Falconer, A. (1997). "Landscape cover-type modeling using a multi-scene thematic mapper mosaic." Photogrammetric Engineering and Remote Sensing, [Falls Church, Va.] American Society of Photogrammetry., Vol. 63, No. 1, pp. 59-67.
  25. Hostache, R., Matgen, P., and Wagner, W. (2012). "Change detection approaches for flood extent mapping: How to select the most adequate reference image from online archives?" International Journal of Applied Earth Observation and Geoinformation, Elsevier, Vol. 19, pp. 205-213. https://doi.org/10.1016/j.jag.2012.05.003
  26. Jarihani, A. A., Callow, J. N., Johansen, K., and Gouweleeuw, B. (2013). "Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods." Journal of Hydrology, Elsevier, Vol. 505, pp. 78-90. https://doi.org/10.1016/j.jhydrol.2013.09.010
  27. Kandus, P., Karszenbaum, H., Pultz, T., Parmuchi, G., and Bava, J. (2001). "Influence of flood conditions and vegetation status on the radar backscatter of wetland ecosystems." Canadian Journal of Remote Sensing, Taylor & Francis, Vol. 27, No. 6, pp. 651-662. https://doi.org/10.1080/07038992.2001.10854907
  28. Kim, J. C., and Paik, K. (2015). "Deriving Channel Width-discharge Relationship from Remote Sensing Imagery and Digital Elevation Models." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 48, No. 8, pp. 685-693. https://doi.org/10.3741/JKWRA.2015.48.8.685
  29. Kim, J. H., and Kim, G. (2014). "A Binarization Technique using Histogram Matching for License Plate with a Shadow." Journal of Broadcast Engineering, The Korean Institute of Broadcast and Media Engineers, Vol. 19, No. 1, pp. 56-63. https://doi.org/10.5909/JBE.2014.19.1.56
  30. Koblinsky, C. J., Clarke, R. T., Brenner, A., and Frey, H. (1993). "Measurement of river level variations with satellite altimetry." Water Resources Research, Wiley Online Library, Vol. 29, No. 6, pp. 1839-1848. https://doi.org/10.1029/93WR00542
  31. Kouraev, A. V., Zakharova, E. A., Samain, O., Mognard, N. M., and Cazenave, A. (2004). "Ob'river discharge from TOPEX/ Poseidon satellite altimetry (1992-2002)." Remote Sensing of Environment, Elsevier, Vol. 93, No. 1-2, pp. 238-245. https://doi.org/10.1016/j.rse.2004.07.007
  32. Lanfear, K. J., and Hirsch, R. M. (1999). "USGS Study reveals a decline in long‐record streamgages." Eos, Transactions American Geophysical Union, Wiley Online Library, Vol. 80, No. 50, pp. 605-607.
  33. Lee, J. (1983). "Digital image smoothing and the sigma filter." Computer vision, graphics, and image processing, Academic Press, Vol. 24, No. 2, pp. 255-269. https://doi.org/10.1016/0734-189X(83)90047-6
  34. Leon, J. G., Calmant, S., Seyler, F., Bonnet, M., Cauhope, M., Frappart, F., Filizola, N., and Fraizy, P. (2006). "Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges." Journal of hydrology, Elsevier, Vol. 328, No. 3-4, pp. 481-496. https://doi.org/10.1016/j.jhydrol.2005.12.006
  35. Leopold, L. B., and Maddock, T. (1953). "The hydraulic geometry of stream channels and some physiographic implications." Edited by Anonymous 252. US Government Printing Office.
  36. Liu, C. (2016). "Analysis of Sentinel-1 SAR data for mapping standing water in the Twente region." The Netherlands.
  37. Maheu, C., Cazenave, A., and Mechoso, C. R. (2003). "Water level fluctuations in the Plata basin (South America) from Topex/ Poseidon satellite altimetry." Geophysical Research Letters, Wiley Online Library, Vol. 30, No. 3.
  38. Malenovsky, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., and Berger, M. (2012). "Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. " Remote Sensing of Environment, Elsevier, Vol. 120, pp. 91-101. https://doi.org/10.1016/j.rse.2011.09.026
  39. Mansourpour, M., Rajabi, M., and Blais, J. (2006). "Effects and performance of speckle noise reduction filters on active radar and SAR images." Proc. ISPRS, Vol. 36, pp. W41.
  40. Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., and Harding, D. (2017). "The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation." Remote Sensing of Environment, Elsevier, Vol. 190, pp. 260-273. https://doi.org/10.1016/j.rse.2016.12.029
  41. Marsh, T. J. (2002). "Capitalising on river flow data to meet changing national needs-a UK perspective." Flow Measurement and Instrumentation, Elsevier, Vol. 13, No. 5-6, pp. 291-298. https://doi.org/10.1016/S0955-5986(02)00056-0
  42. Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and Savenije, H. (2011). "Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies." Physics and Chemistry of the Earth, Parts A/B/C, Elsevier, Vol. 36, No. 7-8, pp. 241-252. https://doi.org/10.1016/j.pce.2010.12.009
  43. Meenakshi, A., and Punitham, V. (2011). "Performance of speckle noise reduction filters on active radar and sar images." Gopalax- International Journal of Technology and Engineering System (IJTES), Vol. 1, pp. 112-114.
  44. Morris, C. S., and Gill, S. K. (1994). "Variation of Great Lakes water levels derived from Geosat altimetry." Water Resources Research, Wiley Online Library, Vol. 30, No. 4, pp. 1009-1017. https://doi.org/10.1029/94WR00064
  45. Musa, Z., Popescu, I., and Mynett, A. (2015). "A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation." Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 19, No. 9, pp. 3755-3769. https://doi.org/10.5194/hess-19-3755-2015
  46. Otsu, N. (1979). "A threshold selection method from gray-level histograms." IEEE transactions on systems, man, and cybernetics, IEEE, Vol. 9, No. 1, pp. 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  47. Pavelsky, T. M. (2014). "Using width‐based rating curves from spatially discontinuous satellite imagery to monitor river discharge." Hydrological Processes, Wiley Online Library, Vol. 28, No. 6, pp. 3035-3040. https://doi.org/10.1002/hyp.10157
  48. Pham-Duc, B., Prigent, C., and Aires, F. (2017). "Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations." Water, Multidisciplinary Digital Publishing Institute, Vol. 9, No. 6, pp. 366. https://doi.org/10.3390/w9060366
  49. Poenaru, V., Badea, A., Cimpeanu, S. M., and Irimescu, A. (2015). "Multi-temporal multi-spectral and radar remote sensing for agricultural monitoring in the Braila Plain." Agriculture and Agricultural Science Procedia, Elsevier, Vol. 6, pp. 506-516. https://doi.org/10.1016/j.aaspro.2015.08.134
  50. Raclot, D. (2006). "Remote sensing of water levels on floodplains: a spatial approach guided by hydraulic functioning." International Journal of Remote Sensing, Taylor & Francis, Vol. 27, No. 12, pp. 2553-2574. https://doi.org/10.1080/01431160600554397
  51. Rosen, P. A., Kim, Y., Kumar, R., Misra, T., Bhan, R., and Sagi, V. R. (2017). "Global persistent SAR sampling with the NASA-ISRO SAR (NISAR) mission." Radar Conference (RadarConf), 2017 IEEE, IEEE, pp. 0410-0414.
  52. Roy, S., and Mistri, B. (2013). "Estimation of peak flood discharge for an ungauged river: a case study of the Kunur River, West Bengal." Geography journal, Hindawi, Vol. 2013.
  53. Scharroo, R., Bonekamp, H., Ponsard, C., Parisot, F., von Engeln, A., Tahtadjiev, M., de Vriendt, K., and Montagner, F. (2016). "Jason continuity of services: continuing the Jason altimeter data records as Copernicus Sentinel-6." Ocean Science, Copernicus GmbH, Vol. 12, No. 2, pp. 471-479.
  54. Sichangi, A. W., Wang, L., Yang, K., Chen, D., Wang, Z., Li, X., Zhou, J., Liu, W., and Kuria, D. (2016). "Estimating continental river basin discharges using multiple remote sensing data sets." Remote Sensing of Environment, Elsevier, Vol. 179, pp. 36-53. https://doi.org/10.1016/j.rse.2016.03.019
  55. Smith, L. C., and Pavelsky, T. M. (2008). "Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia." Water Resources Research, Wiley Online Library, Vol. 44, No. 3.
  56. Smith, L. C., Isacks, B. L., Bloom, A. L., and Murray, A. B. (1996). "Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins." Water Resources Research, Wiley Online Library, Vol. 32, No. 7, pp. 2021-2034. https://doi.org/10.1029/96WR00752
  57. Smith, L. C., Isacks, B. L., Forster, R. R., Bloom, A. L., and Preuss, I. (1995). "Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results." Water Resources Research, Wiley Online Library, Vol. 31, No. 5, pp. 1325-1329. https://doi.org/10.1029/95WR00145
  58. Tarpanelli, A., Barbetta, S., Brocca, L., and Moramarco, T. (2013). "River discharge estimation by using altimetry data and simplified flood routing modeling." Remote Sensing, Multidisciplinary Digital Publishing Institute, Vol. 5, No. 9, pp. 4145-4162. https://doi.org/10.3390/rs5094145
  59. Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., and Brown, M. (2012). "GMES Sentinel-1 mission." Remote Sensing of Environment, Elsevier, Vol. 120, pp. 9-24. https://doi.org/10.1016/j.rse.2011.05.028
  60. Tourian, M., Schwatke, C., and Sneeuw, N. (2017). "River discharge estimation at daily resolution from satellite altimetry over an entire river basin." Journal of Hydrology, Elsevier, Vol. 546, pp. 230-247. https://doi.org/10.1016/j.jhydrol.2017.01.009
  61. Traon, P., Gaspar, P., Ogor, F., and Dorandeu, J. (1995). "Satellites work in tandem to improve accuracy of data." Eos, Transactions American Geophysical Union, Wiley Online Library, Vol. 76, No. 39, pp. 385-389. https://doi.org/10.1029/95EO00236
  62. Twele, A., Cao, W., Plank, S., and Martinis, S. (2016). "Sentinel- 1-based flood mapping: a fully automated processing chain." International Journal of Remote Sensing, Taylor & Francis, Vol. 37, No. 13, pp. 2990-3004. https://doi.org/10.1080/01431161.2016.1192304
  63. Vorosmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). "Global water resources: vulnerability from climate change and population growth." Science (New York, N.Y.), Vol. 289, No. 5477, pp. 284-288. https://doi.org/10.1126/science.289.5477.284
  64. World Water Assessment Programme (United Nations) (2009). "Water in a changing world." Edited by Anonymous 1. Earthscan.
  65. Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., and Woodcock, C. E. (2012). "Opening the archive: How free data has enabled the science and monitoring promise of Landsat." Remote Sensing of Environment, Elsevier, Vol. 122, pp. 2-10. https://doi.org/10.1016/j.rse.2012.01.010
  66. Xu, K., Zhang, J., Watanabe, M., and Sun, C. (2004). "Estimating river discharge from very high‐resolution satellite data: a case study in the Yangtze River, China." Hydrological Processes, Wiley Online Library, Vol. 18, No. 10, pp. 1927-1939. https://doi.org/10.1002/hyp.1458
  67. Yong, S., Kang, G., and Heo, H. (2016). "Current Status and Future Prospects of Satellite Payloads Technology." Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 44, pp. 710-717. https://doi.org/10.5139/JKSAS.2016.44.8.710
  68. Zanter, K. (2016). Landsat 8 (L8) data users handbook. accessed 20 January 2018, .