DOI QR코드

DOI QR Code

Optimal design and operation of water transmission system

상수도 송·배수시스템의 최적 설계 및 운영 모형 개발

  • Choi, Jeongwook (Department of Civil Engineering, Kyung Hee University) ;
  • Jeong, Gimoon (Department of Civil Engineering, Kyung Hee University) ;
  • Kim, Kangmin (Department of Civil Engineering, Kyung Hee University) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University)
  • 최정욱 (경희대학교 사회기반시스템공학과) ;
  • 정기문 (경희대학교 사회기반시스템공학과) ;
  • 김강민 (경희대학교 사회기반시스템공학과) ;
  • 강두선 (경희대학교 사회기반시스템공학과)
  • Received : 2018.09.16
  • Accepted : 2018.10.14
  • Published : 2018.12.31

Abstract

Korea's water transmission system is operated by the nonpressure flow method that flows from highlands to lowlands due to the nature of Korea with many mountainous areas. In order to store water in the highlands, the water pumps are installed and operated. However, In this process, a lot of electrical energy is consumed. therefore, it is necessary to minimize the energy consumption by optimizing the size and operation schedule of the water pumps. The optimal capacity and operation method of the water pump are affected by the size of the tank (distributing reservoir). Therefore, in order to economically design and operate the water transmission system, it is reasonable to consider both the construction cost of the water pump and the tank and the long-term operation cost of the water pump at the step of determining the scale of the initial facilities. In this study, the optimum design model was developed that can optimize both the optimal size of the water pump and the tank and the operation scheduling of the water pump by using the genetic algorithm (GA). The developed model was verified by applying it to the water transmission systems operated in Korea. It is expected that this study will help to estimate the optimal size of the water pump and the tank in the initial design of the water transmission system.

국내 송 배수 시스템은 산지가 많은 지형적 특성을 이용하여 송수펌프를 통해 고지대에 위치한 배수지에 용수를 저장한 후, 급수구역으로 자연유하방식으로 배수하는 방식을 사용한다. 이 과정에서 송수펌프 운영에 많은 전기 에너지가 소모되며, 이는 전체 상수관망 시스템 운영에서 가장 큰 비중을 차지하는 것으로 알려져 있다. 송수펌프의 적정 용량과 운영방법은 하류단에 위치한 배수지의 크기에 영향을 받게 되므로 송, 배수 시스템의 경제적인 설계와 안정적인 운영을 위해서는 초기 시설물의 규모 결정 단계에서 송수펌프 및 배수지의 건설비용과 송수펌프의 장기간 운영비용을 함께 고려하는 것이 타당하다고 할 수 있다. 본 연구에서는 최적화 기법인 유전자 알고리즘(Genetic Algorithm, GA)을 활용하여 송수펌프와 배수지의 최적규모와 송수펌프의 운영스케줄링을 동시에 최적화 할 수 있는 모형을 개발하였다. 개발 모형은 국내에서 운영 중인 송 배수시스템에 적용하여 검증을 실시하였다. 본 연구는 송 배수시스템의 초기 설계에 있어 송수펌프와 배수지의 최적규모 산정에 도움을 줄 것으로 기대한다.

Keywords

SJOHCI_2018_v51n12_1171_f0001.png 이미지

Fig. 1. Scheme of the proposed optimization model

SJOHCI_2018_v51n12_1171_f0002.png 이미지

Fig. 2. Pumping head (H) and discharge (Q)

SJOHCI_2018_v51n12_1171_f0003.png 이미지

Fig. 3. Decision for tank capacity determination

SJOHCI_2018_v51n12_1171_f0004.png 이미지

Fig. 4. P-city water distribution system layout

SJOHCI_2018_v51n12_1171_f0005.png 이미지

Fig. 5. Pump scheduling comparison (ON=1, OFF=0)

SJOHCI_2018_v51n12_1171_f0006.png 이미지

Fig. 6. Tank water level comparison

SJOHCI_2018_v51n12_1171_f0007.png 이미지

Fig. 7. Economic cost comparison

Table 1. Energy tariff (KEPCO, 2012)

SJOHCI_2018_v51n12_1171_t0001.png 이미지

Table 2. Existing tank and pump size

SJOHCI_2018_v51n12_1171_t0002.png 이미지

Table 3. Comparisons between original and simplified networks

SJOHCI_2018_v51n12_1171_t0003.png 이미지

Table 4. Case description

SJOHCI_2018_v51n12_1171_t0004.png 이미지

Table 5. Comparisons between existing and optimal facilities size

SJOHCI_2018_v51n12_1171_t0005.png 이미지

Table 6. Pump operation time comparisons

SJOHCI_2018_v51n12_1171_t0006.png 이미지

References

  1. AbdelMeguid, H., and Ulanicki, B. (2010). "Feedback rules for operation of pumps in a water supply system considering electricity tariffs." In Water Distribution Systems Analysis 2010. pp. 1188-1205.
  2. Alperovits, E., and Shamir, U. (1977). "Design of optimal water distribution systems." Water resources research, Vol. 13, No. 6, pp. 885-900. https://doi.org/10.1029/WR013i006p00885
  3. Babayan, A., Kapelan, Z., Savic, D., and Walters, G. (2005). "Least- cost design of water distribution networks under demand uncertainty." Journal of Water Resources Planning and Management, Vol. 131, No. 5, pp. 375-382. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(375)
  4. Boulos, P. F., Wu, Z., Orr, C. H., Moore, M., Hsiung, P., and Thomas, D. (2001). "Optimal pump operation of water distribution systems using genetic algorithms." In Distribution System Symposium.
  5. Choi, J. W., and Kang, D. (2015). "Skeletonization Methods for Complex Water Distribution Network." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 845-855. https://doi.org/10.3741/JKWRA.2015.48.10.845
  6. Farmani, R., Savic, D. A., and Walters, G. A. (2004). "The simultaneous multi-objective optimization of anytown pipe rehabilitation, tank sizing, tank siting, and pump operation schedules." In Critical Transitions in Water and Environmental Resources Management, pp. 1-10.
  7. Farmani, R., Walters, G. A., and Savic, D. A. (2005). "Trade-off between total cost and reliability for Anytown water distribution network." Journal of Water Resources Planning and Management, Vol. 131, No. 3, pp. 161-171. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(161)
  8. Giacomello, C., Kapelan, Z., and Nicolini, M. (2012). "Fast hybrid optimization method for effective pump scheduling." Journal of Water Resources Planning and Management, Vol. 139, No. 2, pp. 175-183. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000239
  9. Jung, D., Kang, D., Kang, M., and Kim, B. (2015). "Real-time pump scheduling for water transmission systems: Case study." KSCE Journal of Civil Engineering, Vol. 19, No. 7, pp. 1987-1993. https://doi.org/10.1007/s12205-014-0195-x
  10. Jung, D., Lansey, K. E., Choi, Y. H., and Kim, J. H. (2016). "Robustness-based optimal pump design and scheduling for water distribution systems." Journal of Hydroinformatics, Vol. 18, No. 3, pp. 500-513. https://doi.org/10.2166/hydro.2015.091
  11. Kim, K., Choi, J., Jung, D., and Kang, D. (2017). "Sensitivity analysis of pump and tank sizes on water network operation and water age." Journal of Korea Water Resources Association, Vol. 50, No. 12, pp. 803-813. https://doi.org/10.3741/JKWRA.2017.50.12.803
  12. Korea Electric Power COrporation (KEPCO). (2012). Electric power statistics information system.
  13. Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., and Tan, C. L. (2003). "Ant colony optimization for design of water distribution systems." Journal of water resources planning and management, Vol. 129, No. 3, pp. 200-209. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  14. Murphy, L. J., Dandy, G. C., and Simpson, A. R. (1994). "Optimum design and operation of pumped water distribution-systems." 1994 Int. Conf. on Hydraulics in Civil Engineering-Hydraulics Working with the Environment, Preprints of Papers 94, The Institution of Engineers, UAustralia, pp. 149-155.
  15. Ostfeld, A. (2005). "Optimal design and operation of multiquality networks under unsteady conditions." Journal of water resources planning and management, Vol. 131, No. 2, pp. 116-124. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(116)
  16. Ostfeld, A., and Tubaltzev, A. (2008). "Ant colony optimization for least-cost design and operation of pumping water distribution systems." Journal of Water Resources Planning and Management, Vol. 134, No. 2, pp. 107-118. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(107)
  17. Pasha, M. F. K., and Lansey, K. (2010). "Strategies for real time pump operation for water distribution systems." In Water Distribution Systems Analysis 2010, pp. 1456-1469.
  18. Prasad, T. D. (2007). "Design of Anytown network with improved tank sizing methodology." Combined Int. Conf. of Computing and Control for the Water Industry CCWI2007 and Sustainable Urban Water Management SUWM2007, September 3, 2007- September 5, 2007, Taylor and Francis/Balkema, Leiden, Netherlands.
  19. Schwartz, R., Housh, M., and Ostfeld, A. (2016). "Least-Cost Robust Design Optimization of Water Distribution Systems under Multiple Loading." Journal of Water Resources Planning and Management, Vol. 142, No. 9, 04016031. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000670
  20. Vamvakeridou-Lyroudia, L. S., Savic, D. A., and Walters, G. A. (2007). "Tank simulation for the optimization of water distribution networks." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 625-636. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(625)
  21. Walters, G. A., Halhal, D., Savic, D., and Ouazar, D. (1999). "Improved design of "Anytown" distribution network using structured messy genetic algorithms." Urban Water, Vol. 1, No. 1, pp. 23-38. https://doi.org/10.1016/S1462-0758(99)00005-9